tim gtnn cua bieu thuc
A= 5x^2+y^2 -4xy-2y+2023
tim gtnn cua bieu thuc
C=5x2+y2+10+4xy-14x-6y
Tim GTNN cua bieu thuc
A= \({2x^2+3y^2+4xy-8x-2y+18}\)
2A = 4x^2+6y^2+8xy-16x-4y+36
= [(4x^2+8xy+4y^2)-2.(2x+2y).4+16]+(2y^2+12y+18)+2
= (2x+2y-4)^2+2.(y+3)^2+2 >= 2
=> A >= 1
Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 và y=-3
Vậy GTNN của A = 1 <=> x=5 và y=-3
Tk mk nha
CHo 2 so duong xy co X+Y=1
Tim gtnn cua bieu thuc P=1/x^2+y^2 + 2/xy+4XY
tim GTNN cua cac don thuc a)x^2 - 4xy + 5y^2 - 2y + 3
b)x^2 - 2xy + 2y^2 - x +y
Tim GTNN cua bieu thuc A=5x^2=9y^2-4x-12xy+9
A=5x^2+9y^2-4x-12xy+9
= x^2 - 4x + 4 + 9y^2 - 12xy + 4x^2 + 5
= (x-2)^2 + (3y - 2x)^2 +5 >= 5
Dấu "=" xẩy ra khi x-2=0 và 3y-2x=0
hay x = 2 và y = 4/3
Vậy GTNN của A là 5 khi x = 2 và y = 4/3
1) tim GTNN cua cac don thuc a)x^2 - 4xy + 5y^2 - 2y + 3
b)x^2 - 2xy + 2y^2 - x +y
4x2+5y2-4xy-16y+22
Tim GTNN cua bieu thuc
4x2+5y2-4xy-16y+22
=4x2-4xy+y2+4y2-16xy+16+6
=(2x+y)2+(2x-4)2+6
Vì (2x+y)2;(2x-4)2\(\ge\)0 nên (2x+y)2+(2x-4)2+6\(\ge\)6
Dấu "=" xảy ra khi 2x-4=0 và 2x+y=0
<=> x=2 và 2.2+y=0
<=>x=2 và y=-4
Vậy GTNN của biểu thức là 6 tại x=2;y=-4
tim GTNN cua cac don thuc a)x^2 - 4xy + 5y^2 - 2y + 3
b)x^2 - 2xy + 2y^2 - x +y
a)Đặt A=\(x^2-4xy+5y^2-2y+3\)
\(\Leftrightarrow x^2-4xy+4y^2+y^2-2y+1+2\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-1\right)^2+2\)
Vì \(\left(x-2y\right)^2\ge0;\left(y-1\right)^2\ge0\)
Nên \(\left(x-2y\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy Min A = 2 khi x = 2 ; y = 1
b)k ko hỉu
a)A= \(x^2-4xy+5y^2-2y+3\)
\(=x^2-4xy+4y^2+y^2-2y+1-2\)
\(=\left(x-2y\right)^2+\left(y-1\right)^2-2\ge-2\)
MIN A=-2 khi\(\orbr{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=1\end{cases}}}\)Vậy.......
b)\(B=x^2-2xy+2y^2-x+y\)????
Tim gtnn cua bieu thuc
C=5x^2-7x+4
D=x^2+y^2-2x-4y-6
\(C=5x^2-7x+4\\ =5\left(x^2-\frac{7}{5}x\right)+4\\ =5\left(x^2-2\cdot x\cdot\frac{7}{10}+\left(\frac{7}{10}\right)^2\right)+\frac{31}{20}\\ =\left(x-\frac{7}{10}\right)^2+\frac{31}{10}\ge\frac{31}{10}\forall x\)
Vậy Min C = \(\frac{31}{10}\)khi \(x=\frac{7}{10}\)
\(D=x^2+y^2-2x-4y-6\\ =\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\)
Ta thấy \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow D=\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\forall x,y\)
Vậy min D = -11 khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(C=5x^2-7x+4\\ =5x^2-7x+\frac{49}{20}+\frac{31}{20}\\ =\left(x\sqrt{5}-\frac{7\sqrt{5}}{10}\right)^2+\frac{31}{20}\ge\frac{31}{20}\left(\forall x\in R\right)\)
Đẳng thức xảy ra \(\Leftrightarrow x\sqrt{5}-\frac{7\sqrt{5}}{10}=0\Leftrightarrow\sqrt{5}\left(x-\frac{7}{10}\right)=0\Leftrightarrow x=\frac{7}{10}\)
\(D=x^2+y^2-2x-4y-6=0\\ =x^2-2x+1+y^2-4y+4-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\left(\forall x,y\in R\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(minC=\frac{31}{20}\), đạt được khi \(x=\frac{7}{10}\); và \(minD=-11\), đạt được khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Chúc bạn học tốt nha.