Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen van huy
Xem chi tiết
minhduc
5 tháng 12 2017 lúc 15:18

 a/b+b/c+c/a=b/a+c/b+a/c 
<=> a/b-b/a+b/c-c/b+c/a-a/c=0 
<=> a^2c-c^2a+c^2b-b^2c+b^2a-a^2b=0 
<=> ac(a-c)+bc(c-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a+a-b)+ab(b-a)=0 
<=> ac(a-c)+bc(c-a)+bc(a-b)+ab(b-a)=0 
<=> (a-c)(a-b)c+(a-b)(c-a)b=0 
<=> (a-b)(c-a)(b-c)=0 
<=> a=b hay c=a hay b=c 
Vậy trong ba số a,b,c tồn tại 2 số =nhau

Miyuki
Xem chi tiết
Phan Thanh Tịnh
30 tháng 10 2016 lúc 17:42

\(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}=\frac{a+3+b}{3+b+a}=1\Rightarrow b=a\)

Sang Đặng
5 tháng 11 2016 lúc 13:43

Suy ra a*3*b/3*b*a=1 suy ra a=b

Phạm Nguyễn Hùng Nguyên
Xem chi tiết
Dịch Dương Thiên Tỉ
Xem chi tiết
Phạm Đôn Lễ
29 tháng 9 2018 lúc 20:13

đặt a/b=c/d=k =>a=bk;c=dk

A)thay a và c vào (3a+2c)/(3b+2d)và (-5a+3c)/(-5b+3d)

+)(3bk+2dk)/(3b+2d)=k

+)(-5bk+3dk)/(-5b+3d)=k

vậy.....................................................................................................

B)thay a=bk;c=dk vào 2 biểu trên ta có

+)(bk-b)/b=k-1

+)(dk-d)/d=k-1

(bạn sai đề bài r chỗ a-d thành a-b)

Dung Đặng Phương
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Lầy Văn Lội
10 tháng 7 2017 lúc 11:19

Áp dụng BĐT cauchy-schwarz :

\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)

\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)

nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)

Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)

do đó \(VT\ge\frac{1}{3}\)

Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)

tth_new
Xem chi tiết
Trần Phúc Khang
30 tháng 5 2019 lúc 13:45

Ta có 

\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Khi đó 

\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Trần Phúc Khang
30 tháng 5 2019 lúc 14:28

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)

Do \(a+b^2\ge2b\sqrt{a}\)

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Do \(\sqrt{a}\le\frac{a+1}{2}\)

hotboy
Xem chi tiết
no name
Xem chi tiết
Thắng Nguyễn
28 tháng 11 2016 lúc 21:58

Đặt \(\hept{\begin{cases}x=b+c-a\\y=a+c-b\\z=a+b-c\end{cases}}\left(x;y;z>0\right)\).Ta có:

\(x+y=b+c-a+a+c-b=2c\Rightarrow c=\frac{x+y}{2}\)

\(y+z=a+c-b+a+b-c=2a\Rightarrow a=\frac{y+z}{2}\)

\(z+x=a+b-c+b+c-a=2b\Rightarrow b=\frac{z+x}{2}\)

Do đó: \(A=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)

\(\Leftrightarrow2A=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\ge6\) (BĐT AM-GM)

\(\Rightarrow A\ge\frac{6}{2}=3\).Dấu "=" khi a=b=c