Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh vy
Xem chi tiết
Nguyễn Thị Kim Thúy
Xem chi tiết
Minh Lê Thái Bình
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:52

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:30

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 13:29

loading...

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 20:04

loading...

b: Xét (O) có

ΔCAB nội tiếp

CB là đường kính

Do đó: ΔCAB vuông tại A

=>CA\(\perp\)AB tại A

=>CA\(\perp\)BE tại A

Ta có: \(\widehat{OAE}=\widehat{OAC}+\widehat{EAC}=\widehat{OAC}+90^0\)

\(\widehat{MAC}=\widehat{MAO}+\widehat{OAC}=\widehat{OAC}+90^0\)

Do đó: \(\widehat{OAE}=\widehat{MAC}\)

Xét tứ giác CKAE có \(\widehat{CKE}=\widehat{CAE}=90^0\)

nên CKAE là tứ giác nội tiếp

=>\(\widehat{ACK}=\widehat{AEK}\)

=>\(\widehat{ACM}=\widehat{AEO}\)

Xét ΔAMC và ΔAOE có

\(\widehat{ACM}=\widehat{AEO}\)

\(\widehat{MAC}=\widehat{OAE}\)

Do đó: ΔAMC đồng dạng với ΔAOE

=>\(\dfrac{AM}{AO}=\dfrac{AC}{AE}\)

=>\(AM\cdot AE=AO\cdot AC\)

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 19:33

loading...

loading...

loading...

Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 12 2023 lúc 19:11

a: Ta có: ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(MA^2=15^2-9^2=144\)

=>\(MA=\sqrt{144}=12\left(cm\right)\)

Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{AO}{OM}=\dfrac{3}{5}\)

nên \(\widehat{AMO}\simeq36^052'\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}\simeq73^044'\)

c: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=OC^2\)

Xét ΔOHE vuông tại H và ΔOKM vuông tại K có

\(\widehat{HOE}\) chung

Do đó: ΔOHE đồng dạng với ΔOKM

=>\(\dfrac{OH}{OK}=\dfrac{OE}{OM}\)

=>\(OK\cdot OE=OH\cdot OM\)

=>\(OK\cdot OE=OC^2\)

=>\(\dfrac{OK}{OC}=\dfrac{OC}{OE}\)

Xét ΔOKC và ΔOCE có

\(\dfrac{OK}{OC}=\dfrac{OC}{OE}\)

\(\widehat{KOC}\) chung

Do đó: ΔOKC đồng dạng với ΔOCE

=>\(\widehat{OKC}=\widehat{OCE}\)

=>\(\widehat{OCE}=90^0\)

=>EC là tiếp tuyến của (O)