Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ho duong k linh
Xem chi tiết
Phạm Thị Minh Tâm
Xem chi tiết
Hoàng Thị Lan Hương
24 tháng 7 2017 lúc 10:07

a. ĐKXĐ \(x\ge0\)và \(x\ne9\)

Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)

\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)

Vậy với \(0\le x< \frac{9}{4}\)thì K<-1

c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)

\(\Rightarrow K\ge-3\)

Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

Nông Duy Khánh
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
5 tháng 12 2019 lúc 21:48

Có cách khác nè:

P=x4(x−1)3+y4(y−1)3≥2√x4y4(x−1)3(y−1)3x4(x−1)3+y4(y−1)3≥2x4y4(x−1)3(y−1)3

⇒P≥2x2y2√(x−1)3(y−1)3=2.x2x−1.y2y−1.1√(x−1)(y−1)⇒P≥2x2y2(x−1)3(y−1)3=2.x2x−1.y2y−1.1(x−1)(y−1)

Ta dễ dàng chứng minh được a2a−1≥4a2a−1≥4

⇒P≥2.4.4.1√(x−1)(y−1)≥32.1x−1+y−12≥32⇒P≥2.4.4.1(x−1)(y−1)≥32.1x−1+y−12≥32

Dấu "=" khi x=y=2

Khách vãng lai đã xóa
Team Free Fire 💔 Tớ Đan...
5 tháng 12 2019 lúc 21:49

x4(x−1)3+16(x−1)≥8.x2(x−1)x4(x−1)3+16(x−1)≥8.x2(x−1)

Tương tự và cộng hai BĐT lại : 

p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)

Ta xét A=x2x−1+y2y−1A=x2x−1+y2y−1

Đặt x - 1 = a và y - 1 = b, ta có A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥2√4+4=8⇒A≥8A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥24+4=8⇒A≥8

Do đó P≥8A−16(x+y)+32≥8.8−16.4+32=32P≥8A−16(x+y)+32≥8.8−16.4+32=32

Min P = 32 <=> x = y = 2 

Khách vãng lai đã xóa
Bế Xuân Thế
Xem chi tiết
Akai Haruma
17 tháng 12 2021 lúc 13:11

Lời giải:

$K=\frac{\sqrt{x}(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}+\frac{4}{\sqrt{x}+1}$

$=(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}-1$

$\geq 2\sqrt{4}-1=3$ (theo BĐT Cô-si)

Vậy $K_{\min}=3$. Giá trị này đạt tại $\sqrt{x}+1=2\Leftrightarrow x=1$

ĐẶNG QUỐC SƠN
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết
Xuân Trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 13:58

undefined

no name
Xem chi tiết
ngonhuminh
12 tháng 1 2017 lúc 22:15

ĐK x>=0

GTNN =-7 khi x=0

\(N+7=\frac{2\sqrt{x}-7+3\sqrt{x}+7}{3\sqrt{x}+1}=\frac{5\sqrt{x}}{3\sqrt{x}+1}\ge0\)mọi x>=0 đảng thức khi x=0

Trâm Anh
Xem chi tiết
Edogawa Conan
14 tháng 8 2020 lúc 21:12

ĐKXĐ: x \(\ge\)0; x \(\ne\)1 ; x \(\ne\)4

a) P = \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)

P = \(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}:\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)

P = \(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\cdot\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-x-\sqrt{x}+4}\)

P = \(\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{4-x}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) P < 0 <=> \(\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)

Do \(\sqrt{x}+2>0\) => \(\sqrt{x}-1< 0\) => \(\sqrt{x}< 1\) => \(x< 1\)

kết hợp với đk => S = {x| \(0\le x< 1\)}

c) P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)

Do \(\sqrt{x}+2\ge2\) => \(-\frac{3}{\sqrt{x}+2}\ge-\frac{3}{2}\) => \(1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=>  x = 0

Vậy MinP = -1/2 khi x = 0

Khách vãng lai đã xóa