Lời giải:
$K=\frac{\sqrt{x}(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}+\frac{4}{\sqrt{x}+1}$
$=(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}-1$
$\geq 2\sqrt{4}-1=3$ (theo BĐT Cô-si)
Vậy $K_{\min}=3$. Giá trị này đạt tại $\sqrt{x}+1=2\Leftrightarrow x=1$
Lời giải:
$K=\frac{\sqrt{x}(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}+\frac{4}{\sqrt{x}+1}$
$=(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}-1$
$\geq 2\sqrt{4}-1=3$ (theo BĐT Cô-si)
Vậy $K_{\min}=3$. Giá trị này đạt tại $\sqrt{x}+1=2\Leftrightarrow x=1$
Với x nguyên, tìm GTNN của biểu thức sau:
B = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-5}\) (\(x\ge0\), \(x\ne25\))
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) và B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-5}-\dfrac{8\sqrt{x}+20}{x-25}\) với \(x\ge0;x\ne25\)
c) Biểu thức B sau khi thu gọn được B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\). Tìm các giá trị của x để M = \(\dfrac{A}{B}\) nhận giá trị nguyên lớn nhất
Giúp mình với!!! Bài này về bất đẳng thức Cauchy ak!!!
1. Cho x > 1 hãy tìm GTNN của:
P=\(\dfrac{x}{\sqrt{x}-1}\)
2. Tìm GTNN của:
B=\(\dfrac{x+15}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}+3}\)
\(\left(x\ge0;x\ne1,x\ne9\right)\)
Cho biểu thức:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn biểu thức A.
b) Tìm tất cả các giá trị của x để \(A\ge0\).
\(\text{Cho biểu thức :B= ( \dfrac{15-\sqrt{x}}{x-25}+ \dfrac{2}{\sqrt{x}+5})\times(\dfrac{\sqrt{x\:-5}}{\sqrt{x\:+1}}) (với x\ge0;x\ne25 ) a) Rút gọn biểu thức b) Tìm giá trị của để }\)
Tìm gtnn của biểu thức sau:
\(4.\dfrac{\sqrt{x}}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}+1}\)
Bài 3: Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\) với \(x\ge0\) và \(x\ne4\)
a) Rút gọn A
b) Tìm giá trị của x để A > 0
Cho biểu thức A=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\left(x-1\right)\)(\(x\ge0;x\ne1\))
a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{7\sqrt{x}-6}{x-4}+\dfrac{\sqrt{x}-3}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) (với \(x\ge0;x\ne4\))
c) Biểu thức B sau khi thu gọn được B = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\). Cho biểu thức P = A.B. Tìm x để \(\left|P\right|-P=0\)