`1. P = x/(sqrt x-1)`
`= (x-1+1)/(sqrtx-1)`
`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`
`= sqrt x+1 + 1/(sqrt x-1)`
`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.
ĐTXR `<=> (sqrtx-1)^2 = 1`.
`<=> x =4` hoặc `x = 0 ( ktm)`.
Vậy Min A `= 4 <=> x= 4`.
1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)
\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)
Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)
\(\Rightarrow P\ge2+2=4\)
Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
KL;....
2:
\(B=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}\)
\(=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)
=>\(B>=2\cdot\sqrt{25}-6=4\)
Dấu = xảy ra khi (căn x+3)^2=25
=>căn x+3=5
=>căn x=2
=>x=4
2) \(B=\dfrac{x+15}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}+3}=\dfrac{x+16}{\sqrt{x}+3}\)
\(=\dfrac{x+3\sqrt{x}-3\sqrt{x}-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)
\(\ge2\sqrt{(\sqrt{x}+3).\dfrac{25}{\sqrt{x}+3}}-6=2.5-6=4\) (BĐT Cô si cho 2 số \(\sqrt{x}+3\) và \(\dfrac{25}{\sqrt{x}+3}\)dương )
Dấu bằng xảy ra khi \(\left(\sqrt{x}+3\right)^2=25\Leftrightarrow\sqrt{x}+3=5\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\) (t/m)
KL:....