So sánh: \(4\frac{8}{33}\)và \(3\sqrt{2}\)
So sánh
\(4\frac{8}{33}\)và \(3\sqrt{2}\)
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)
\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)
Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)
b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)
\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)
Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)
a) so sánh 4\(\frac{8}{3}\) và 3\(\sqrt{2}\)
b)so sánh 5 \(\sqrt{\left(-10\right)^2}\)và 10 \(\sqrt{\left(-5\right)^2}\)
kết bạn với nhau được không dương
1) Rút gọn
\(A=\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
2) So sánh: \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)và \(\sqrt{3}\)
1) \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)
\(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0
=> A=3
2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)
\(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)
Mà A >0
=> A=2
Mà 4>3
=> \(\sqrt{4}=2>\sqrt{3}\)
=> \(A>\sqrt{3}\)
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
1) có bao nhiêu giá trị nguyên của x để biểu thức
\(M=\sqrt{x+4}+\sqrt{2-x}\) có nghĩa
2) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk nhé mk cần gấp
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
so sánh \(\frac{-1}{\sqrt{33}-\sqrt{31}}\) và \(\frac{-1}{\sqrt{34}-\sqrt{32}}\)
So sánh
1-\(\frac{1}{\sqrt{8}}\)và \(\frac{3}{4}\)
Ta có: \(\frac{1}{8}>\frac{1}{9}\) => \(\sqrt{\frac{1}{8}}>\sqrt{\frac{1}{9}}\)hay \(\frac{1}{\sqrt{8}}>\frac{1}{\sqrt{9}}=\frac{1}{3}\)
=> \(1-\frac{1}{\sqrt{8}}< 1-\frac{1}{3}\)
\(\frac{3}{4}=1-\frac{1}{4}\)
Do \(\frac{1}{3}>\frac{1}{4}\) => \(1-\frac{1}{3}< 1-\frac{1}{4}\)
hay \(1-\frac{1}{\sqrt{8}}< \frac{3}{4}\)
Bài làm:
Ta có: \(1-\frac{1}{\sqrt{8}}< 1-\frac{1}{\sqrt{9}}=1-\frac{1}{3}< 1-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow1-\frac{1}{\sqrt{8}}< \frac{3}{4}\)
so sánh \(E=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2015\sqrt{2014}}\) và 2