chứng minh bất phương trình với x,y,z,d>0 và xy+yz+zd+dx=4
\(\frac{x^4}{x^3+2y^3}+\frac{y^4}{y^3+2z^3}+\frac{z^4}{z^3+2d^3}+\frac{d^4}{d^3+2x^3}\ge\frac{4}{3}\)\(\frac{4}{3}\)
đặt \(A=\frac{\sqrt{yz}}{x+3\sqrt{yz}}+\frac{\sqrt{zx}}{y+3\sqrt{zx}}+\frac{\sqrt{xy}}{z+3\sqrt{xy}}\)
\(\Rightarrow1-3A=\frac{x}{x+3\sqrt{yz}}+\frac{y}{y+3\sqrt{zx}}+\frac{z}{z+3\sqrt{xy}}\)
\(\ge\frac{x}{x+\frac{3}{2}\left(y+z\right)}+\frac{y}{y+\frac{3}{2}\left(z+x\right)}+\frac{z}{z+\frac{3}{2}\left(x+y\right)}\)
\(=\frac{2x}{2x+3\left(y+z\right)}+\frac{2y}{2y+3\left(z+x\right)}+\frac{2z}{2z+3\left(x+y\right)}\)
\(=\frac{2x^2}{2x^2+3xy+3xz}+\frac{2y^2}{2y^2+3yz+3xy}+\frac{2z^2}{2z^2+3zx+3yz}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+6\left(xy+yz+zx\right)}=\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{2\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{2\left(x+y+z\right)^2}{\frac{8}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
\(\Rightarrow1-3A\ge\frac{3}{4}\Rightarrow A\le\frac{3}{4}\left(Q.E.D\right)\)
Cho x,y,z > 0 thỏa xy+yz+zx=xyz. Chứng minh:
\(\frac{x^4+y^4}{xy\left(x^3+y^3\right)}+\frac{y^4+z^4}{yz\left(y^3+z^3\right)}+\frac{z^4+x^4}{zx\left(z^3+x^3\right)}\ge1\)
cho x, y,z >0 chung minh rang\(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}< hoac=\frac{3}{ }4\)3/4
Cho x, y,z >0. chứng minh:
\(\frac{\sqrt{yz}}{x+3\sqrt{yz}}+\frac{\sqrt{xy}}{z+3\sqrt{xy}}+\frac{\sqrt{xz}}{y+3\sqrt{yz}}\le\frac{3}{4}\)3/4
Đặt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) (chẳng có lý do j đâu mình gõ a,b,c quen hơn thôi)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)
\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
lý do đặt x,y,z= a,b,c
chỉ để copy nhanh hơn thôi :))
cho x,y,z>0 thỏa mãn x+y+z=3. Cmr:
\(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+x^2+z^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
toán lớp mấy v
1hay 23456789
cho x,y,z là các số dương thỏa \(x^2+y^2+z^2=3\)
chứng minh:\(\frac{x^2}{y+2\text{z}}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}+\frac{1}{1+\sqrt{3+2\left(xy+yz+x\text{z}\right)}}\ge\frac{5}{4}\)
+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)
\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)
+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)
Áp dụng bđt Bunhiacopxki
\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)
\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)
(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Tương tự: \(xy^2+yz^2+zx^2\le3\)
\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)
\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)
\(CMR:\frac{3\left(x^3+y^3+z^3\right)}{4\left(xy+yz+zx\right)}+\frac{1}{\left(x+y+z\right)^2}\ge\frac{3}{4}\)
(x,y,z>0)
Cho x,y,z > 0 và x+y+z = 2008
Chứng minh : \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{x^4+z^4}{x^3+z^3}\) ≥ 2008
Ta có:
\(x^4+y^4\ge x^3y+xy^3\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x^3+y^3\right)\left(x+y\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
Σ\(\frac{x^4+y^4}{x^3+y^3}\)\(\ge x+y+z=2008\)
cho x;y;z thỏa mãn x+y+z=3
CMR: \(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+x^2+z^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\)
\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\)
Cần chứng minh \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)
\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{xz}}{xz\left(4-xz\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)
Cauchy-Schwarz: \(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)
\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)
\(\Leftrightarrow\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)
Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)
Dấu "=" <=> x=y=z=1
em là pô pô nê người con của Thái Nguyên
Bài này có nhiều cách làm. Cách khác:
Gọi vế trái của BĐT là P. Khi đó biến đổi P như sau:
\(P=\left(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\right)+\left(x^2+y^2+z^2\right)\left(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\right)\)
Theo BĐT Bunhiacopsky dạng phân thức ta có:
\(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+zx\right)}\)
\(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\ge\frac{9}{12-\left(xy+yz+zx\right)}\)
Do đó ta được:
\(P\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+xz\right)}+\frac{9\left(x^2+y^2+z^2\right)}{12-\left(xy+yz+xz\right)}\)
\(\ge\frac{3\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}+\frac{9\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}\)
\(\ge\frac{12\left(xy+yz+xz\right)}{12-\left(xy+yz+zx\right)}\ge\frac{36\sqrt[3]{x^2y^2z^2}}{12-3\sqrt[3]{x^2y^2z^2}}\)
đặt \(\sqrt[3]{xyz}=t\le\frac{x+y+z}{3}=1\). Khi đó ta có:
\(\frac{36t^2}{12-3t^2}-4t^3\Leftrightarrow12t^2\left(t-1\right)\left(t^2+t-3\right)\ge0\)
Đánh giá BĐT cuối cùng luôn đúng. BĐT được chứng minh xong