so sánh : \(\sqrt{196-36}\) và \(\sqrt{196}-\sqrt{36}\)
tính
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)
b) 36 : \(\sqrt{2.3^2.18}-\sqrt{169}\)
c) \(\sqrt{\sqrt{81}}\)
d) \(\sqrt{3^2+4^2}\)
a: \(=4\cdot5+14:7\)
=20+2
=22
So sánh:
\(A=\sqrt{225}-\frac{1}{\sqrt{5}}-1\)và \(B=\sqrt{196}-\frac{1}{\sqrt{6}}\)
\(A=\sqrt{225}-\frac{1}{\sqrt{5}}-1=15-\frac{1}{\sqrt{5}}-1=14-\frac{1}{\sqrt{5}}\)
\(B=\sqrt{196}-\frac{1}{\sqrt{6}}=14-\frac{1}{\sqrt{6}}\)
vì \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)nên A<B
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
So sánh A= \(\sqrt{225}-\frac{1}{\sqrt{5}}-1\) và B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\)
Tính:
a. \(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49};\)
b. \(36:\sqrt{2.3^2.18}-\sqrt{169};\)
c. \(\sqrt{\sqrt{81}};\)
d. \(\sqrt{3^2+4^2}.\)
a) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{196}:\sqrt{49}\)
\(=\sqrt{16\cdot25}+\sqrt{196:49}\)
\(=20+2=22\)
b) \(36:\sqrt{2\cdot3^2\cdot18}-\sqrt{169}\)
\(=36:\sqrt{324}-\sqrt{169}\)
\(=36:18-13=2-13=-11\)
c) \(\sqrt{\sqrt{81}}\)
\(=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}\)
\(=\sqrt{9+16}=\sqrt{25}=5\)
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}\div\sqrt{49}\)
\(=4.5+14:7\)
\(=20+2=22\)
b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\)
\(=36:18-13=-11\)
c) \(\sqrt{\sqrt{81}}=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}=\sqrt{25}=5\)
Không dùng mtct, hãy so sánh
A=\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
B=\(\sqrt{196}-\dfrac{1}{\sqrt{3}}-1\)và c=\(\sqrt{169}+\dfrac{-1}{\sqrt{2}}\)
M=\(\sqrt{61-35}\)vàN=\(\sqrt{61}-\sqrt{35}\)
a) so sánh \(\sqrt{36-25}và\sqrt{36}-\sqrt{25}\)
b) chứng minh với a>0, b>0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
a) \(\sqrt{36-25}=\sqrt{11}\)
\(\sqrt{36}-\sqrt{25}=6-5=1\)
Suy ra \(\sqrt{36-25}>\sqrt{36}-\sqrt{25}\)
a,\(\sqrt{36-25}=-1\)
\(\sqrt{36}-\sqrt{25}=1\)
Vậy: \(\sqrt{36-25}< \sqrt{36}-\sqrt{25}\)
a. ta có: \(\sqrt{36-25}=\sqrt{11}\) (1)
\(\sqrt{36}-\sqrt{25}=6-5=1\)(2)
từ (1) và (2) suy ra : \(\sqrt{36-25}>\sqrt{36}-\sqrt{25}\)
So sánh A với B biết:
A=\(\sqrt{225}-\frac{1}{\sqrt{5}}-1\)
B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\)
1. Tìm gtln (gtnn) của biểu thức
A = | x - 2 | + | x + 5 |
2. Tìm 3 phân số biết rằng tổng của chúng là \(3\frac{7}{36}\)'; tử của chúng theo tỉ lệ 2, 3, 5; còn mẫu theo tỉ lệ 5, 4, 6
3. So sánh
E = \(\sqrt{225}-\frac{1}{\sqrt{5}}-1\)và B = \(\sqrt{196}-\frac{1}{\sqrt{6}}\)
GIÚP MÌNH VỚI NHA! MÌNH CẢM ƠN!
A=I x-2 I + I x+5 I>=I x-2-x-5 I=7
Vậy minA=7 <=> -2<= x <= 5
cho x,y,z >0 và x+y+z=25 và \(x^2+y^2+z^2\) =233
giá trị của : \(x\sqrt{\frac{\left(196+y^2\right)\left(196+z^2\right)}{196+x^2}}+y\sqrt{\frac{\left(196+x^2\right)\left(196+z^2\right)}{196+y^2}}+z\sqrt{\frac{\left(196+y^2\right)\left(196+x^2\right)}{196+z^2}}\) là:
mình trả lời rồi đó :
,hzgb3fewniurse8w23uhxu9ew8ahbg18yhr7tgfse7w6hb ch