Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Nhi Vũ
Xem chi tiết
Xyz OLM
2 tháng 7 2021 lúc 10:37

2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)

\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)

Để P đạt GTLN 

=> Mẫu thức đạt GTNN

mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)

Thay x = -5/2 và y = 5/2 vào P 

Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)

Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2

Khách vãng lai đã xóa
Xyz OLM
2 tháng 7 2021 lúc 10:48

1) Ta có P = x2 + 2xy + 3y2 + 5y + 10

= (x2 + 2xy + y2) + (2y2 + 5y + 10) 

\(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)

\(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)

Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4 

Khách vãng lai đã xóa
Mary Smith
Xem chi tiết
Đời Buồn Tênh
5 tháng 8 2017 lúc 16:01

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

Quỳnh Nhã (Nagisa Kino)
Xem chi tiết
Phạm Minh Anh
11 tháng 3 2017 lúc 20:45

A=(5x-3y-2)+ (x+y+1)+ 4

Vậy giá trị nhỏ nhất của A là 4

Lê Minh Đức
Xem chi tiết
Thắng Nguyễn
30 tháng 5 2017 lúc 22:53

Ta có: \(\frac{P}{4}=\frac{2x^2-xy-y^2}{x^2+2xy+3y^2}\)

Xét x=0 =>...

Xét x#0 chia cả tử và mẫu cho x2 rồi đặt \(t=\frac{y}{x}\)

Delta=....

Phạm Hải Anh
28 tháng 9 2017 lúc 22:07

bn giải lại đc ko ạ

Nguyễn Bảo Long
Xem chi tiết
Tạ Thị Hoàng Dự
5 tháng 7 2017 lúc 13:43

https://olm.vn/hoi-dapDễ z mà ko bít ..

Nguyễn Bảo Long
Xem chi tiết
nguyễn ngọc quỳnh anh
Xem chi tiết
Nguyễn Minh Quang
10 tháng 10 2021 lúc 22:15

ta có:

undefined

Khách vãng lai đã xóa
phuong truc
Xem chi tiết
Quỳnh Nguyễn
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 22:00

Lời giải:

$A=2x^2+y^2+2xy+2x-2y+2023$

$=(x^2+2xy+y^2)+x^2+2x-2y+2023$

$=(x+y)^2-2(x+y)+x^2+4x+2023$

$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$

$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$

$\Leftrightarrow x=-2; y=3$