(1+1+1+1+1+1+1+1+1+1):10
Tính A= 1 - 1/2 +1/3 -1/4 +...+ 1/9 - 1/10
B= (1 + 1/2 + 1/3 +...+1/10) - 2(1/2 + 1/4 +...+ 1/10)
C= 1/6 + 1/7 + 1/8 + 1/9 + 1/10
mik chịu mà bn thức khuya để học bài à ?? bn chăm thế !!
cho A=1/1-1/2+1/2_1/4+...+1/9-1/10
B=(1/1+1/2+1/3+...+1/10)-2.(1/2+1/4+...+1/10)a, so sánh Avaf B
b, chứng minh: A=1/6+1/7+1/8+1/9+1/10
cho A = 1/1-1/2+1/3-1/4 +1/5-1/6+1/7-1/8+1/9-1/10, B = (1/1+1/2+1/3+1/4+...+1/10)-2(1/2+1/4+...+1/10. so sánh A và B
Bài làm:
Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)
Vậy A = B
1+1/2+1/3+1/4+....+1/8+1/9+1/10
1/1*10+1/2*9+1/3*8+......+1/8*3+1/2*9+1/10*1
Cho A = 1/1 - 1/2 + 1/3 - 1/4 + ... + 1/9 - 1/10
B = ( 1/1 + 1/2 + 1/3 + ... + 1/10 ) - 2 ( 1/2 + 1/4 + ... + 1/10 )
1/ So sánh A và B
2/ Chứng minh: A = 1/6 + 1/7 + 1/8 +1/9 + 1/10
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+...+\frac{1}{5}\right)\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{10}\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}\right)\)
Vậy A = B và A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
1/ A= \(\left(\frac{1}{1.2}\right)+\left(\frac{1}{3.4}\right)+...+\left(\frac{1}{9.10}\right)\)
B=(1/1+1/2+1/3+...+1/10)- (1/1+1/2+...+1/5)
<=> B=1/6+1/7+1/8+1/9+1/10.
5+1+1+1+1+1+1+1+1+1+1*10*10*0+1
5+1+1+1+1+1+1+1+1+1+1*10*10*0+1
=0+1
=1
5+1+1+1+1+1+1+1+1+1+1*10*10*0+1
=5+1+1+1+1+1+1+1+1+1+0+1
=5+1+1+1+1+1+1+1+1+1+1
5+10*1
=5+10
=15
(1-1/10):(1+1/10):(1+1/11):(1+1/12): ... :(1+1/500)
\(\left(1-\dfrac{1}{10}\right):\left(1+\dfrac{1}{10}\right):\left(1+\dfrac{1}{11}\right):\left(1+\dfrac{1}{12}\right):...:\left(1+\dfrac{1}{500}\right)\)
=\(\dfrac{9}{10}:\dfrac{11}{10}:\dfrac{12}{11}:\dfrac{13}{12}:...:\dfrac{501}{500}\)
=\(\dfrac{9}{10}.\dfrac{10}{11}:\dfrac{12}{11}:\dfrac{13}{12}:...:\dfrac{501}{500}\)
=\(\dfrac{9}{11}:\dfrac{12}{11}:\dfrac{13}{12}:...:\dfrac{501}{500}\)=\(\dfrac{9}{501}\)=\(\dfrac{3}{167}\)
(1-1/10):(1+1/10):(1+1/11):(1+1/12): ... :(1+1/500)
-Mình làm rồi. Bạn xem bài đăng lúc nãy của bạn,
a, [1- 1/2] *[1- 1/3]*[1- 1/4]*[1- 1/4]*[1- 1/5]*[1- 1/6]
b 1/2*4*6 + 1/4*6*8 +1/6*8*10 +1/8*10*12 +1/10*12*14 +...1/96*98*100
a) ( 1 - 1/2 ) x ( 1 - 1/3 ) x ( 1 - 1/4 ) x ( 1 - 1/5 ) x ( 1 - 1/6 )
= 1/2 x 2/3 x 3/4 x 4/5 x 5/6
= \(\frac{1.2.3.4.5}{2.3.4.5.6}\)
= 1/6
1+1+1+1+1+2+3+4+5+6+7+8+9+10 x 1+1+1+1+1+2+3+4+5+6+7+8+9+10 +1+1+1+1+1+2+3+4+5+6+7+8+9+10 - 10 x 9 - 9 + 45 +46 +47 =