Cho a,b dương và ab=1.CMR \(\frac{a^3}{1+b^2}+\frac{b^3}{1+a^2}>=1\)
Cho a,b,c dương và abc=1.Cmr \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ac+c+2}}\) bé hơn \(\frac{3}{2}\)
Cho 3 số thực dương a,b,c thỏa ab + bc+ ca = 3. CMR:
\(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(a+c\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)
Cho a,b,c dương và a+b+c=3
CMR: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng bđt AM-GM ta có
\(abc\le\left(\frac{a+b+c}{3}\right)^3=1\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Ta chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{abc}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}\le\frac{3}{abc}\)
\(\Leftrightarrow ab+bc+ca\le3=\frac{\left(a+b+c\right)^2}{3}\)(luôn đúng)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Dòng thứ 3 của Linh bị ngược dấu rồi.
Chứng minh các khác:
Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (@)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\)(1)
Ta chứng minh: \(\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(2)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)đúng theo (@)
=> (2) đúng
Từ (1) ; (2) => \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra <=> a = b = c = 1.
Thank you các bạn, mk có cách khác hơi dài mới nghĩ ra nhờ mn xem hộ
Vì a,b,c>0 nên áp dụng bđt Cô-si ta có
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{a+b+c}{abc}\left(1\right)\)
Ta lại có: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ac\)\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Cộng hai vế của bđt trên với 2ab+2bc+2ca ta được:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)\(\Rightarrow3\left(a+b+c\right)\ge3\left(ab+bc+ca\right)\Rightarrow a+b+c\ge ab+bc+ca\)
\(\Rightarrow\frac{a+b+c}{abc}\ge\frac{ab+bc+ca}{abc}\Leftrightarrow\frac{a+b+c}{abc}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a^2}=\frac{1}{b^2};\frac{1}{b^2}=\frac{1}{c^2};\frac{1}{c^2}=\frac{1}{a^2}\\a^2=b^2;b^2=c^2;c^2=a^2\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1>0}\)
cho ba số dương a b c thỏa mãn a+b+c <=3 cmr
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge\frac{3}{2}\)
Cho a, b, c là các số thực dương abc=1. CMR: \(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\le\frac{3}{4}\)
Cho a,b,c là các số thực dương thỏa mãn ab+ac+bc= 3. CMR:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
Áp dụng bđt AM-GM :
\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{a^2+1}{\left(a^2+1\right)\cdot4}}=1\)
Tương tự ta có :
\(\frac{1}{b^2+1}+\frac{b^2+1}{4}\ge1\)
\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge1\)
Cộng từng vế ta có :
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{a^2+b^2+c^2+3}{4}\ge3\)
Áp dụng bđt quen thuộc : \(a^2+b^2+c^2\ge ab+bc+ac=3\)
Khi đó : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{3+3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
bạn làm sai rồi . Khi \(a^2+b^2+c^2\ge3\) bạn chuyển vế thì nó không cùng dấu với bất đẳng thức
cách này được ko. ( có tham khảo )
Không mất tính tổng quát, giả sử c = min ( a,b,c ).
Khi đó : ab + bc + ac = 3 \(\Rightarrow\)ab \(\ge\)1
CM với a,b > 0 và ab \(\ge\)1 thì \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\) ( tự c/m )
Ta có : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{2}{ab+1}+\frac{1}{c^2+1}\)
ta cần c/m \(\frac{2}{ab+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\ge\frac{3}{2}\)
\(\Leftrightarrow c^2+3\ge3abc^2+ab\)\(\Leftrightarrow c^2+bc+ac\ge3abc^2\)
\(\Leftrightarrow a+b+c\ge3abc\)
BĐT trên đúng vì theo AM-GM ta có : \(a+b+c\ge\sqrt{3\left(ab+bc+ac\right)}=3\)
và \(3=ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow3abc\le3\)
do đó ta có đpcm
Dấu "= " xảy ra \(\Leftrightarrow\)a = b = c = 1
Cho a,b,c là các số dương thoaar mãn ab+bc+ca=3
Cmr: \(\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\le1\)
Ai giúp mình với :(( Mình cần gấp ạ
Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :
\(\left(a^2+b^2+1^2\right)\left(1^2+1^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2=\left(a+b+c\right)^2\)
\(\Rightarrow\frac{1}{1+a^2+b^2}=\frac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}\le\frac{2+c^2}{\left(a+b+c\right)^2}\)
Tương tự : \(\frac{1}{1+b^2+c^2}=\frac{1+1+a^2}{\left(1+b^2+c^2\right)\left(1+1+a^2\right)}\le\frac{2+a^2}{\left(a+b+c\right)^2}\)
\(\frac{1}{1+c^2+a^2}=\frac{1+1+b^2}{\left(1+c^2+a^2\right)\left(1+1+b^2\right)}\le\frac{2+b^2}{\left(a+b+c\right)^2}\)
Cộng từng vế BĐT lại, ta được :
\(\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\le\frac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{6+a^2+b^2+c^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)
Vậy BĐT đã được chứng minh
Cho các số thực dương a,b,c thỏa mãn abc=1. CMR:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc-2}}+\frac{1}{\sqrt{c^4-c^3+ac-2}}\le\sqrt{3}\)
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).
Với \(a,b>0\), ta có:
\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).
\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).
\(\Leftrightarrow a^4-a^3-a+1\ge0\).
\(\Leftrightarrow a^4-a^3+1\ge a\).
\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).
\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).
\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).
Chứng minh tương tự (với \(b,c>0\)), ta được:
\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=1\).
Chứng minh tương tự (với \(a,c>0\)), ta được:
\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)
Dấu bằng xảy ra \(\Leftrightarrow c=1\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:
\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).
\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).
Ta có:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).
\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).
\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).
Do đó:
\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).
\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).
Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).
Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).
\(+2\)nhé, không phải \(-2\)đâu.
cho 3 số dương 0<a<b<c<1 cmr:\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< 2\)
Lời giải:
Do $0< a< b< c< 1$ nên $0< ab< ac< bc$
\(\Rightarrow \frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< \frac{a}{ab+1}+\frac{b}{ab+1}+\frac{c}{ab+1}=\frac{a+b+c}{ab+1}(1)\)
Vì $a,b< 1$ nên \((a-1)(b-1)>0\Leftrightarrow ab+1> a+b\)
$c< 1$ nên $1+ab>c$
\(\Rightarrow 2(ab+1)> a+b+c(2)\)
Từ (1);(2) \(\Rightarrow \frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< \frac{a+b+c}{ab+1}< \frac{2(ab+1)}{ab+1}=2\)
Ta có đpcm.