Đơn giản xúc tích ngắn gọn dễ hiểu :)) Cauchy-Schwarz dạng Engel + Cosi nhé
\(\frac{a^3}{1+b^2}+\frac{b^3}{1+a^2}=\frac{a^2}{b^3+b}+\frac{b^2}{a^3+a}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a^2-ab+b^2+1\right)}=\frac{a+b}{a^2+b^2}\ge\frac{2\sqrt{ab}}{2\sqrt{\left(ab\right)^2}}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)
Chúc bạn học tốt ~
ấy khúc cuối ngu was -,-
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\) ( vì a, b dương )
Chúc bạn học tốt ~
van sai ban oi cho danh gia a^2+b^2 o duoi mau bi nguoc dau roi