Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ctuu
Xem chi tiết
Phùng khánh my
29 tháng 11 2023 lúc 12:42

a) Để chứng minh tứ giác AHBE là hình chữ nhật, ta cần chứng minh AH || BE và AH = BE.

 

Vì ΔABC cân tại A, nên đường cao AH là đường trung trực của BC. Do đó, AH vuông góc với BC.

Vì E là điểm đối xứng của H qua M, nên EM = MH và góc EMH = góc HME = 90 độ.

 

Do đó, ta có:

- AH || BE (vì AH và BE đều vuông góc với BC).

- AH = EM = BE (vì EM = MH và E là điểm đối xứng của H qua M).

 

Vậy tứ giác AHBE là hình chữ nhật.

 

b) Gọi F là điểm đối xứng của A qua BC. Ta cần chứng minh tứ giác ABFC là hình thoi.

 

Vì F là điểm đối xứng của A qua BC, nên AF = AC và góc AFC = góc ACB.

Vì ΔABC cân tại A, nên góc ACB = góc ABC.

 

Do đó, ta có:

- AF = AC (vì F là điểm đối xứng của A qua BC).

- góc AFC = góc ACB = góc ABC.

 

Vậy tứ giác ABFC là hình thoi.

 

c) Gọi K là giao điểm của FM và BC. Ta cần chứng minh 4HK = CK.

 

Vì M là trung điểm của AB, nên MK || AC và MK = 1/2 AC.

Vì E là điểm đối xứng của H qua M, nên EM = MH.

 

Do đó, ta có:

- HK = EM (vì HK || EM và HK = EM).

- CK = AC (vì CK là đường chéo của hình chữ nhật AHBE).

 

Vậy ta có:

4HK = 4EM = 2EM + 2EM = 2EM + 2MH = EH + CH = CK.

 

Vậy 4HK = CK.

Nhữ_ Thị _Ngọc _Hà
Xem chi tiết
Dinh Nam Hai
Xem chi tiết
Darlingg🥝
12 tháng 12 2021 lúc 22:02

ABCKHM----

a) Xét tứ giác AHCK ta có:

 Vì O trung điểm AC

K đối xứng vs H qua O => O trung điểm HK

Mà AC và HK cắt nhau tại trung điểm O

=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)

Lại có ^AHC=90( AH là đường cao)

=> AHCK là hcn (hbh có 1 góc vuông)

b) Xét tứ giác ABMC có:

M đối xứng với A qua H => AM là đường trung trực 

=> AB=AC (1)

Mặt khác:M đối xứng vs A qua H=> H trung điểm AM

AH là đường cao của tam giác ABC cân tại A

=> AH là đường trung tuyến của tam giác ABC

=>H là trug điểm BC (HB=HC)

mà AM và BC cắt nhau tại trug điểm H

Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)

Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)

c) Xét tứ giác ABHK có:

Vì HB=HC (cmt)

mà AK=HC ( AKHC là hcn)

=> AK=BH 

Lại có AK//BC (AKHC là hcn)

=>AK//BH 

Nên AKBH là hbh (  2 cạnh đối // và = nhau)

d) VÌ HB=HC=BC/2 (cm câu a)

=> HC=6/2=3 cm

Áp dụng công thức tính S và hcn AKHC ta có:

SAKHC=AH.HC

=> SAKHC=4.3=12 (cm2)

Vậy  SAKHC=12 cm2

Khách vãng lai đã xóa
Nguyễn Linh
Xem chi tiết
Trần Phương
Xem chi tiết
Lục Thừa Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 1:04

a: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

góc AHB=90 độ

Do đó: AHBE là hình chữ nhật

b: Xét tứ giác ABFC có

H là trung điểm chung của AF và BC

AB=AC

Do đó:ABFC là hình thoi

Hiền Đoàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 14:31

a: Xét tứ giác AHCD có

N là trung điểm của AC
N là trung điểm của HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

Xét tứ giác AHBE có 

M là trung điểm của AB

M là trung điểm của HE

Do đó: AHBE là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

oanh nguyen
Xem chi tiết
Po Nguyen
Xem chi tiết
Trương Hồng Hạnh
19 tháng 12 2017 lúc 21:24

Ta có hình vẽ:

A B C H E M N K

a/ Ta có: EM = MH (E đối xứng với H qua M);

AM = MB (M là trung điểm AB)

H = 900 (AH vuông góc với BC)

=> AHBE là hình chữ nhật

b/ Vì AHBE là hình chữ nhật

=> AE = BH và AE // BH

Mà tam giác ABC cân; AH là đường cao

=> BH = HC

=> AE = HC; AE // HC

=> AEHC là hình bình hành.

c/ Ta có: N là trung điểm AC; M là trung điểm AB => MN là đường trung bình

=> MN // BC mà AH vuông góc BC

=> AH vuông góc MN => AH cắt MN (1)

Mà AEHC là hình bình hành

=> AH cắt CE (hai đường chéo) (2)

Từ (1) và (2) => AH,CE,MN đồng quy

d/ Gọi AH, CE, MN đồng quy tại O

HI // AB cắt CE tại I

Xét hai tam giác AKO và HIO:

=> t/gAKO = t/gHIO

=> AK = HI

HI là đường TB của t/g CKB => HI = 1/2 CK

=> AK = 1/2 CK hay 3AK = AB

Tran Thi Thuy Trang
3 tháng 12 2018 lúc 5:20

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

Tran Thi Thuy Trang
3 tháng 12 2018 lúc 5:59

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh