Xác định hệ số a,b sao cho \(P=x^4+2x^3+ax^2+2x+b\)là bình phương của một đa thức.
Xác định các hệ số a,b để đa thức sau là bình phương của một đa thức :
\(A=x^4-2x^3-x^2+ax+b\)
Ta có:\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Ta có:A=x4−2x3−x2+ax+b
A=x3(x−2)−x(x−a)+b
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+bA\)
\(x-a=x-2\)
\(=>a=2;b=0\)
~ Hok tốt ~
xác định hệ số a,b để A=x^4+2x^3+ax^2+ 2x+b là bình phương của một đa thức
giúp mik nhanh nhé mik đang cần gấp
Xác định hệ số a,b,c để biểu thức A= x4 -2x3 +ax +b là bình phương của một đa thức
A là đa thức có hệ số cao nhất là 1
=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)
Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)
<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)
Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)
Xác định hệ số a;b để đa thức A= x4-2x3+3x2+ax+b là bình phương 1 đa thức
(Dùng phương pháp đồng nhất hệ số)
xác định các hệ số a,b để đa thức
\(A=x^4-2x^3+3x^2+ax+b\) là bình phuong của 1 đa thức
\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)
Vậy a = -2; b = 1.
1.Xác định hệ số a ,b để đa thức \(A=x^4-2x^3+3x^2+ax+b\)là bình phương của 1 đa thức
2.CMR biểu thức \(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)là bình phương của một đa thức
Xác định các hệ số a,b sao cho các đa thức sau viết được dưới dạng bình phương của một đa thức nào đó
a) x4 + 2x3 + 3x2 + ax + b
b) x4 + ax3 + bx2 - 8x + 1
a/ Giả sử \(x^4+2x^3+3x^2+ax+b=\left(x^2+cx+d\right)^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+ax+b=x^4+c^2x^2+d^2+2x^3c+2xcd+2dx^2\)
\(\Leftrightarrow x^3\left(2-2c\right)+x^2\left(3-c^2-2d\right)+x\left(a-2cd\right)+\left(b-d^2\right)=0\)
Áp dụng hệ số bất định, ta có :
\(\begin{cases}2-2c=0\\3-c^2-2d=0\\a-2cd=0\\b-d^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=2\\b=1\\c=1\\d=1\end{cases}\)
Vậy : \(x^4+2x^3+3x^2+2x+1=\left(x^2+x+1\right)^2\)
b/ Tương tự
Xác định các hệ số a, b sao cho đa thức sau viết được dưới dạng bình phương của một số tự nhiên nào đó:\(A,x^4+2x^3+3x^2+ax+b\)
\(x^4=ax^3+bx^2-8x+1\)
Help me .-.
I wanna cry... :"<
xác định ab để đa thức B= x^4+4x^3+2x^2+ax+b là bình phương của 1 đa thức
ta có : A = x^4 +2x^3+3x^2+ax+b
= x^2(x^2+2x+1) + 2x(x+1) +1+x(a-2) +(b-1)
= x^2(x+1)^2 + 2x(x+1) +1+ x(a-2)+(b-1)
= [ x(x+1) +1]^2 +x(a-2) +(b-1)
đề biểu thức A là một số chính phương thì (a-2) = 0 và ( b-1) = 0
=> a=2 và b=1