Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ruby Linh Chi
Xem chi tiết
Gia Tue Nguyen
Xem chi tiết
TNA Atula
13 tháng 2 2018 lúc 15:07

Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3

Với k N*.

- Nếu n = 4k thi n là hợp số.

- Nếu n = 4k + 2 thi n là hợp số.

Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.

Julianne Inari
Xem chi tiết
Hụt Hẫng
Xem chi tiết
minh hue
Xem chi tiết
GratefulAardvark4970
Xem chi tiết
Lê Hồ Trọng Tín
8 tháng 9 2019 lúc 12:11

Cái này chỉ là xem xét các trường hợp có thể của p thôi

Ta có nhận xét:Với p là số tự nhiên thì p chỉ có thể có dạng p=4k;4k+1;4k+2;4k+3

Mà vì p là số nguyên tố lớn hơn 3 nên p không là số chẵn,ta loại 2 dạng p=4k và 4k+2

Vậy p chỉ viết được dưới dạng 4k+1 và 4k+3

Phan Trung Kiên
Xem chi tiết
đinh thiên tường
Xem chi tiết
Nguyễn Tuyết Nhi
Xem chi tiết
thien ty tfboys
4 tháng 12 2015 lúc 22:01

Giả sử số các số nguyên tố dạng 4k + 3 là hữu hạn.

Gọi đó là p1, p2, ..., pk.

Xét A = 4*p1*p2*...*pk - 1  

A có dạng 4k + 3, vậy theo bổ đề A có ít nhất 1 ước nguyên tố dạng 4k + 3.

Dễ thấy là A không chia hết cho p1, p2, ..., pk, tức không chia hết cho bất cứ số nguyên tố nào có dạng 4k + 3, mâu thuẫn.

Vậy có vô hạn số nguyên tố dạng 4k + 3

**** nhe