Phát biểu lại các mệnh đề sau bằng cách dùng khái niệm “điều kiện cần ”; “điều kiện đủ” a/ Nếu a và b là hai số đối nhau thì chúng có giá trị tuyệt đối bằng nhau. b/ Nếu một tứ giác là hình vuông thì nó có bốn cạnh bằng nhau.
Cho các mệnh đề kéo theo:
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c (a, b, c là những số nguyên).
Các số nguyên tố có tận cùng bằng 0 đều chia hết cho 5.
Một tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.
b) Hãy phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện đủ".
c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện cần".
Mệnh đề | Mệnh đề đảo | Phát biểu bằng khái niệm “ điều kiện đủ” | Phát biểu bằng khái niệm “điều kiện cần” |
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c. | Nếu a + b chia hết cho c thì cả a và b đều chia hết cho c. | a và b chia hết cho c là điều kiện đủ để a + b chia hết cho c. | a + b chia hết cho c là điều kiện cần để a và b chia hết cho c. |
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5. | Các số nguyên chia hết cho 5 thì có tận cùng bằng 0. | Một số nguyên tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5. | Các số nguyên chia hết cho 5 là điều kiện cần để số đó có tận cùng bằng 0. |
Tam giác cân có hai đường trung tuyến bằng nhau | Tam giác có hai đường trung tuyến bằng nhau là tam giác cân. | Tam giác cân là điều kiện đủ để tam giác đó có hai đường trung tuyến bằng nhau. | "Hai trung tuyến của một tam giác bằng nhau là điều kiện cần để tam giác đó cân. |
Hai tam giác bằng nhau có diện tích bằng nhau | Hai tam giác có diện tích bằng nhau là hai tam giác bằng nhau. | Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau. | Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác đó bằng nhau. |
Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c (a, b, c là những số nguyên)
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5
Tam giác cân có hai đường trung tuyến bằng nhau
Hai tam giác bằng nhau có diện tích bằng nhau
a. Hãy phát biếu mệnh đề đảo của mỗi mệnh đề trên
b. Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện đủ"
c. Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện cần"
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần và đủ".
a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại.
b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại.
c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Một hình bình hành có các đường chéo vuông góc là điều kiện cần và đủ để nó là một hình thoi.
c) Để phương trình bậc hai có hai nghiệm phân biệt, điều kiện cần và đủ là biệt thức của nó dương.
Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần và đủ"
a. Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại
b. Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại
c. Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.
Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a+b chia hết cho c (a, b, c là những số nguyên).
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.
Tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.
b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện đủ”.
c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện cần”.
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm “điều kiện cần và đủ”
a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại.
b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại.
c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.
A, Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9
B, Điều kiện cần và đủ để một hình bình hành là một hình thoi và ngược lại là có các đường chéo vuông góc với nhau
C, Điều kiện cần và đủ để một phương trình bậc hai có hai nghiệm là khi và chỉ khi biệt thức của nó dương
Phát biểu sau đúng hay sai, phát biểu lại theo khái niệm "điều kiện cần":
a) Nếu hai tam giác bằng nhau thì chúngcó các góc tươmg ứmg bằng nhau.
b) Nếu tứ giác T là một hình thoi thì nó có hai đường chéo vuông góc nhau.
c) Nếu một số tự nhiên chia hết cho thì nó chia hết cho 3.
d) Nếu a=b thì a2 = b2 .
Cho tam giác ABC. Từ các mệnh đề
P: “Tam giác ABC có hai góc bằng 60o ”
Q: “ABC là một tam giác đều”
Hãy phát biểu định lí P ⇒ Q. Nêu giả thiết, kết luận và phát biểu lại định lí này dưới dạng điều kiện cần, điều kiện đủ.
P ⇒ Q: “ Nếu tam giác ABC có hai góc bằng 60o thì ABC là một tam giác đều”
Giả thiết: “Tam giác ABC có hai góc bằng 60o ”
Kết luận: “ABC là một tam giác đều”
Phát biểu lại định lí này dưới dạng điều kiện cần: “ABC là một tam giác đều là điều kiện cần để tam giác ABC có hai góc bằng 60o”
Phát biểu lại định lí này dưới dạng điều kiện đủ : “Tam giác ABC có hai góc bằng 60o là điều kiện đủ để ABC là tam giác đều”
Mọi người cho em hỏi ( năm nay em học lớp 10 ) , đề bài yêu cầu phát biểu "điều kiện cần" , " điều kiện đủ" của mệnh đề mà nếu như đó là mệnh đề sai ví dụ như ∀a,b ∈ R: a > b <=> a2 > b2 hay " 2 tam giác có 2 cặp góc bằng nhau thì bằng nhau " thì em có cần phải phát biểu đk cần, đk đủ ko hay chỉ cần phát biểu đk cần, đk đủ của các mệnh đề đúng thôi ??
Theo mình chỉ khi mệnh đề đúng mới phát biểu đk cần , đủ được
Ví dụ:
Xét mệnh đề: "Hai tam giác bằng nhau thì diện tích của chúng bằng nhau"
Hãy phát biểu điều kiện cần, điều kiện đủ, điều kiện cần và đủ.
Hướng dẫn:
1) Điều kiện cần: Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
2) Điều kiện đủ: Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau.
3) Điều kiện cần và đủ: Không có
Vì A⇒B: đúng nhưng B⇒A sai, vì " Hai tam giác có diện tích bằng nhau nhưng chưa chắc đã bằng nhau".