Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 12 2021 lúc 9:55

\(a,\) Gọi 2 số đó là \(2n+1;2n+3\left(n\in N\right)\)

Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)

\(\Rightarrow2n+1⋮d;2n+3⋮d\\ \Rightarrow2n+3-2n-1⋮d\\ \Rightarrow2⋮d\)

Mà \(d\) lẻ nên \(d=1\)

Vậy \(ƯCLN\left(2n+1,2n+3\right)=1\left(đpcm\right)\)

\(b,\) Gọi \(d=ƯCLN\left(2n+5,3n+7\right)\)

\(\Rightarrow2n+5⋮d;3n+7⋮d\\ \Rightarrow2\left(3n+7\right)-3\left(2n+5\right)⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+5,3n+7\right)=1\left(đpcm\right)\)

Giang Lê
Xem chi tiết
Feliks Zemdegs
20 tháng 11 2015 lúc 16:36

a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).

Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.

Vậy (2n + 3) – ( 2n + 1) chia hết cho d

Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau. 

nguyễn văn nam
20 tháng 11 2015 lúc 16:35

dài quá bn tick mình mới làm

Vương Thị Diễm Quỳnh
20 tháng 11 2015 lúc 16:38

a) gọi hai số lẻ liên tiếp là a ;a+2

gọi UCLN(a;a+2) là d ta có:

a chia hết cho d 

a+2 chia hết cho d

=>(a+2)-a chia hết cho d

=>2 chia hết cho d

=>d=1;2

nếu d=2 thì a ko chia hết cho bởi a lẻ

=>d=1

=>UCLN(...)=1

=>ntcn

b)gọi UCLN(2n+5;3n+7) là d

ta có :

2n+5 chia hết cho d=>3(2n+5) chia hết cho d =>6n+15 chia hết cho d\

3n+7 chia hết cho d =>2(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(...)=1

=>ntcn

Lê Phạm Mạnh Trường
Xem chi tiết

Câu 1: 2n + 5 và 3n + 7

    Gọi ước chung lớn nhất của 2n + 5 và 3n + 7 là d

        Theo bài ra ta có: 

         \(\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\)

     ⇔ \(\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\)

          6n + 15 -  6n  - 14 ⋮ d

                                    1 ⋮ d

         ⇒ d = 1

Vậy ước chung lớn nhất của 2n + 5 và 3n + 7 là 1

Hay 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau (đpcm)

Trần Thị Ngọc Hà
24 tháng 7 2023 lúc 20:52

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau . 

loan vo
Xem chi tiết
Phan Thanh Tịnh
29 tháng 10 2016 lúc 21:03

a) Gọi 2 số lẻ liên tiếp là 2a + 1 và 2a + 3,ước chung là d( \(d\ne2\)).Ta có :

2a + 1 ; 2a + 3 đều chia hết cho d => (2a + 3) - (2a + 1) = 2 .: d => d = 1 => 2a + 1 ; 2a + 3 nguyên tố cùng nhau

b) Gọi ước chung của 2n + 5 và 3n + 7 là d.Ta có :

2n + 5 .: d => 3(2n + 5) = 6n + 15 .: d

3n + 7 .: d => 2(3n + 7) = 6n + 14 .: d

=> (6n + 15) - (6n + 14) = 1 .: d => d = 1 => 2n + 5 ; 3n + 7 nguyên tố cùng nhau

tran dinh bao
8 tháng 11 2016 lúc 6:24

gọi 2 số lẻ liên tiếp là 2a+1 và 2a+3 ƯC là d ta có :

2a+1 ;2a+3 đều chia hết cho d => (2a+3)-(2a+1)=2 .: d =>2a+1;2a+3 nguyên tố cùng nhau

b)gọi ƯC của 2n+5 và 3n+7 là d ta có

2n+5.d => 3(2n+5)=6n+15.:

3n+7.:d => 2(3n+7)=6n+14.:d

=> (6n+15)-(6n+14)=1.:d =>d=1 =>2n+5 ; 3n+7 nguyên tố cùng nhau

minh anh
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
Nguyễn Huy Tú
6 tháng 8 2021 lúc 8:39

b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)

Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)

3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2) 

Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
OoOanhtqt2006
Xem chi tiết
Cuội ngu ngơ
19 tháng 11 2017 lúc 12:24

a, gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ

Vũ Thị Thảo
19 tháng 11 2017 lúc 12:54

a ,Gọi 2 số lẻ là 2k+1 ; 2k+2 

Gọi Ư CNN  2k+1 và 2k+3 là d 

ta có :

2k+3-2k+1=2 

d thuộc  ƯC (2) ={1;2}

Mà d không thể bằng 2 vì 2k+1 và 2k+3 là số lẻ 

Vậy d = 1

b,Gọi ƯCNN 2n+5và 3n+7 là d 

ta có :

3 .( 2n + 5  )chia hết cho d. =6n+15 chia hết cho d

2.( 3n +7 )chia hết cho d.= 6n+14chia hết cho d

(6n + 15 ) - ( 6n + 14 )  = 6n +15  - 6n -14 =1 

d thuộc ƯC (1 ) ={1}

Vậy 2n + 5 và 3n+ 7là 2 số nguyên tố cùng nhau

OoOanhtqt2006
19 tháng 11 2017 lúc 13:47

cảm ơn nhiều nhé

sát thiên mạch tỷ tỷ
Xem chi tiết
nguyen lam anh
29 tháng 11 2015 lúc 5:54

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau . 

THI MIEU NGUYEN
Xem chi tiết