Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Viên đạn bạc
Xem chi tiết
Trần Tiến Minh
Xem chi tiết
thu hiền hà
Xem chi tiết
Mile Suni
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 20:13

a) Ta có: (x-3)(y+2)=5

nên (x-3) và (y+2) là ước của 5

\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)

b) Ta có: (x-2)(y+1)=5

nên x-2 và y+1 là các ước của 5

\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)

Sir Nghi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 19:57

2:

a: 5/x-y/3=1/6

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)

=>30-2xy=x

=>x(2y+1)=30

=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}

=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}

b: x/6-2/y=1/30

=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)

=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)

=>5xy-60=y

=>y(5x-1)=60

=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)

=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}

Nguyễn Thùy Duyên
Xem chi tiết
rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Khách vãng lai đã xóa
nguyen thi van anh
Xem chi tiết
Không Tên
3 tháng 1 2018 lúc 20:02

BÀI 1:

          \(3x+23\)\(⋮\)\(x+4\)

\(\Leftrightarrow\)\(3\left(x+4\right)+11\)\(⋮\)\(x+4\)

Ta thấy   \(3\left(x+4\right)\)\(⋮\)\(x+4\)

nên  \(11\)\(⋮\)\(x+4\)

hay   \(x+4\)\(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau  

\(x+4\)     \(-11\)     \(-1\)            \(1\)         \(11\)

\(x\)             \(-15\)      \(-5\)       \(-3\)           \(7\)

Vậy     \(x=\left\{-15;-5;-3;7\right\}\)

BÀI 2 

      \(\left(x+5\right)\left(y-3\right)=11\)

\(\Rightarrow\)\(x+5\)  và   \(y-3\) \(\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau:

\(x+5\)        \(-11\)      \(-1\)          \(1\)            \(11\)

\(x\)                 \(-16\)     \(-6\)        \(-4\)             \(6\)

\(y-3\)        \(-1\)      \(-11\)         \(11\)            \(1\)

\(y\)                    \(2\)        \(-8\)            \(14\)           \(4\)

Vậy.....

    

Tuấn Minh Nguyễn
3 tháng 1 2018 lúc 20:08

bài 1:

   3x + 23 chia hết cho x + 4

ta có: 3x + 23 chia hết cho x + 4

   mà x + 4 chia hết cho x + 4

=> 3(x + 4) chia hết cho x + 4

=> (3x + 23) - 3(x + 4)  chia hết cho x + 4

3x + 23 - 3x - 12 chia hết cho x + 4

=> 11 chia hết cho x + 4

=> x + 4 thuộc  Ư(11)

mà Ư(11)= {-11;-1;1;11}

=> x + 4 thuộc {-11;-1;1;11}

=> x thuộc {-15;-5;-3;7}

 Vậy x thuộc {-15;-5;-3;7} thì 3x + 23 chia hết cho x + 4

bài 2:

       (x + 5).(y-3) = 11

 ta có bảng:

   x + 5        -11         -1            1              11

  y - 3           -1         -11          11              1

  x               -16        -6             -4             6 

  y                2          -8             14            4

vậy (x,y) thuộc {(-16;2);(-6;-8);(-4;14);(6;40} thì (x + 5).(y - 3) = 11

Chúc bạn học giỏi ^^

NGUYEN PHUONG DUY
Xem chi tiết
.
14 tháng 3 2020 lúc 10:24

a) x+15 là bội của x+3

\(\Rightarrow\)x+15\(⋮\)x+3

\(\Rightarrow\)x+3+12\(⋮\)x+3

x+3\(⋮\)x+3

\(\Rightarrow\)12\(⋮\)x+3

\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)

Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}

b) (x+1).(y-2)=3

\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}

Có :

x+11-13-3
x0-22-4
y+23-31-1
y1-5-1-3

Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}

Câu c tương tự câu b

Khách vãng lai đã xóa
.
14 tháng 3 2020 lúc 10:29

g) Ta có : (x,y)=5

\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)

Mà x+y=12

\(\Rightarrow\)5m+5n=12

\(\Rightarrow\)5(m+n)=12

\(\Rightarrow\)m+n=\(\frac{12}{5}\)

Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...

Khách vãng lai đã xóa