Tìm x,y thỏa mãn: | x-y-5| + 2015 \(\left(y-3\right)^{2016}\)= 0
Tìm x, y thỏa mãn:\(\left(x-y\right)^{2016}+2015|y-2|=0\)
Có (x - y)2016 \(\ge\)0 với mọi x, y
2015|y - 2| \(\ge\)0 với mọi x, y
Vậy (x - y)2016 + 2015|y - 2| = 0
<=> \(\hept{\begin{cases}\left(x-y\right)^{2016}=0\\2015\left|y-2\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\)
<=> x = y = 2
Ta có:
* ( x - y )2016 = 0 => x - y = 0 => x = y
*2015| y - 2 | = 0 => | y - 2 | = 0 => y - 2 = 0 => y = 2
mà x = y => x =2 ;y = 2
Cho các số x , y thỏa mãn :
\(\left(x+\sqrt{x^2}+2016\right)\left(y+\sqrt{y^2}+2016\right)=2016\)
Tìm giá trị của biểu thức \(P=x^{2015}+y^{2015}+2016\left(x+y\right)+1\)
Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P
a) Tìm x biết : | x - 2014 | + | x - 2015 | + | x - 2016 | = 2
b) Tính giá trị của biểu thức M =15x3y + 7xy với x, y thỏa mãn : \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}\le0\)
(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5
Cho x, y thỏa mãn: \(\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}=0\)
Tính giá trị của biểu thức: \(P=2x^3+15y^3+2016\)
Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)
Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)
\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
Thay x=2 và y=-1 vào biểu thức P ta có:
\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)
Vậy ................
Tìm 3 số nguyên dương x, y, z thỏa mãn:
\(2016\left(x-y\sqrt{2001}\right)=2015\left(y-z\sqrt{2001}\right)\)
và \(x^2+y^2+z^2\)là số nguyên tố
Cho các số thực x,y,z thỏa mãn: x+2y+3z=0 và 2xy+6yz+3zx=0. Tính giá trị của biểu thức:
S=\(\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Giúp mik vs gấp quá !
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
cho các số x,y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
tính giá trị của biểu thức M=\(\left(x+y\right)^{2015}+\left(x-2\right)^{2016}+\left(y+1\right)^{2017}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :
\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
Cho 3 x;y;z thỏa mãn
\(\frac{x}{2014}=\frac{y}{2015}=\frac{z}{2016}\) cm \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)