Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Tâm Lê
Xem chi tiết
Kira Kira
16 tháng 10 2015 lúc 23:36

Có các số hạng của A\S chia hết cho 2

=> S chia hết cho 2

S = 2+23+25+.....+299

S = (2+23)+(25+27)+....+(297+299)

S = 1.(2+23) + 24(2+23) +....+ 296(2+23)

S = 1.10 + 24.10 +....+ 296.10

S = 10.(1+24+...+296) chia hết cho 10

KL: S chia hết cho 2 và 10 (Đpcm)

Nguyễn Thị Cẩm Hồng
Xem chi tiết
Bùi Thế Hào
27 tháng 4 2017 lúc 17:18

Tổng các số hạng của S là 99 số hạng.

a/ Nhóm 3 số hạng liên tiếp với nhau, ta được 33 nhóm như sau:

S=(2+22+23)+....+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)

=> S=2.7+24.7+...+297.7=7(2+24+297)

=> S chia hết cho 7

b/ 

Bùi Thế Hào
27 tháng 4 2017 lúc 17:22

S=1-1+2+22+23+...+299=(1+2+22+23+...+299)-1

Tổng các số hạng trong ngoặc là 100 số hạng. Nhóm 5 số hạng liên tiếp với nhau ta được:

S=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)-1

S=31.(1+25+...+295)-1

=> S+1=31.(1+25+...+295) => S+1 chia hết cho 31

=> S không chia hết cho 31

Thanh Tâm Lê
Xem chi tiết
Nguyễn Quang khánh
Xem chi tiết
Trà My
29 tháng 9 2017 lúc 23:19

a) \(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(=2.5+2^5.5+...+2^{97}.5\)

\(=5\left(2+2^5+...+2^{97}\right)\) chia hết cho 5 (1)

b)\(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)\(=2\left(1+2^2+2^4+...+2^{98}\right)\) chia hết cho 2 (2)

Từ (1) và (2) và (2;5)=1 => S chia hết cho 2.5=10 

Nguyễn Quang khánh
30 tháng 9 2017 lúc 20:19

cho mình hỏi bạn lấy 2.{1+22 }+25 [1+22 ]+.....+297 [1+22 ] ở đâu ra

nguyễn anh thi
Xem chi tiết
ttanjjiro kamado
2 tháng 1 2022 lúc 15:58

S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3

Yuki_Kali_Ruby
Xem chi tiết
Nguyễn Thị Khánh Linh
Xem chi tiết
Nguyễn Nam
9 tháng 11 2017 lúc 19:23

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)

hằng nga giáng trần
Xem chi tiết
ta thi hai yến
Xem chi tiết