Tìm a,b để\(\frac{a+b-18}{3}=\frac{25a-2b-1}{8}=\frac{27a-37}{4-5a}\)
Cho A=\(\frac{27a-37}{4-5a}\)
a. Tìm a để A=2
b. Tìm a thuộc z để A thuộc z
c.Tìm a thuộc z để A có giá trị lớn nhất
đặt x2=a;x+1=b
pt trở thành:
9a3=b(2b-5a)2
<=>9a3-25a2b+20ab2-4b3=0
\(\Leftrightarrow9\left(\frac{a}{b}\right)^3-25\left(\frac{a}{b}\right)^2+\frac{20.a}{b}-4=0\)
đặt \(\frac{a}{b}=q\Rightarrow9q^3-25q^2+20q-4=0\)
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45
Tìm \(\frac{a}{b}\) sao cho \(\frac{4}{9}\) <\(\frac{a}{b}\)<\(\frac{10}{21}\) và 5a-2b=3
Ta có: 4/9<a/b
=>4b<9a hay 5a+4a>2b+2b
5a-2b>4a+2b
3>4a+2b(1)
Ta có: a/b<10/21
=>21a<10b hay 5a+16a<2b+8b
5a-2b<8b-16a(2)
Từ (1);(2) =>4a+2b<8b-16a
4a+16a<8b-2b
20a<6b
a/b<6/20
Vậy a/b<6/20 thì thỏa mãn đề*nghĩ v*
Tìm các số a , b , c nếu :
a ) 5a - 3b -3c = - 536 và \(\frac{a}{4}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b ) 3a - 5b + 7c = 86 và \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)
c ) a - 2b + c = 46 và \(\frac{a}{7}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
d ) 5a = 8b = 3c và a - 2b + c = 34
e ) 3a = 7b và a2 - b2 = 160
g ) a2 + 3b2 - 2c2 = - 16 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i ) a3 + b3 + c3 = 792 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
Bài d tương tự bài e
c) Từ \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
=> \(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
=> \(\begin{cases}a=70\\b=60\\c=96\end{cases}\)
1. tính nhanh các tổng sau
a) A=\(\frac{20}{39}+\frac{22}{37}+\frac{18}{43}vàB=\frac{14}{39}+\frac{22}{39}+\frac{18}{41^{ }}\)
b) A=\(\frac{3}{8^3}+\frac{7}{8^4}\)và B=\(\frac{7}{8^3}+\frac{3}{8^4}\)
Tìm các số a, b, c biết rằng :
1. \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}\) và a - 2b + 4c = 13
2. 4a = 3b ; 7b = 5c va a - b + c = - 46
3. \(\frac{a}{2}=\frac{2b}{5}=\frac{4c}{7}\)và 3a + 5b + 7c = 123
4. \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\) và abc = -108
5. \(\frac{a}{4}=\frac{b}{6},\frac{b}{5}=\frac{c}{8}\)và 5a - 3b - 3c = -536
6. \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)và 3a - 5b + 7c = 86
7. 5a = 8b = 3c và a - 2b + c = 34
8. 2a = 3b = 5c và a + b -c = 95
9. 3a = 7b và a2 - b2 = 160
10. \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a2 + 3b2 - 2c2 = -16
các bạn tl từng câu một cũng đc, giúp mình nhé
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
Tìm phân số \(\frac{a}{b}\) thỏa mãn \(\frac{4}{9}< \frac{a}{b}< \frac{10}{21}\) và 5a - 2b =3
Tỉ số của a và b là:
2 : 5 = \(\frac{2}{5}\)
Số a là:
3 : ( 5 - 2 ) x 2 = 2
Số b là:
3 + 2 = 5
Vậy \(\frac{a}{b}\)là: \(\frac{2}{5}\)
Tỉ số của a và b là :
2 : 5 = 2/5
Số a là :
3 : ( 5 - 2 ) x 2 = 2
Số b là :
3 + 2 = 5
Vậy a/b = 2/5
Tỉ số của a và b là:\(\frac{2}{5}\)
Số a là : 3 : ( 5 - 2 ) x 2 = 2
Số b là : 3 + 2 = 5
Vậy \(\frac{a}{b}\)= \(\frac{2}{5}\)
Cho \(\frac{3a-2b}{3}=\frac{5b-6c}{4}=\frac{4c-5a}{5}\) . Tìm a,b,c biết 3a + b - 2c