Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc hân
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 8 2021 lúc 12:04

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\dfrac{1}{4}x^2=\left(x^2+\dfrac{11}{2}x+8\right)^2-\left(\dfrac{1}{2}x\right)^2=\left(x^2+\dfrac{11}{2}x+8-\dfrac{1}{2}x\right)\left(x^2+\dfrac{11}{2}x+8+\dfrac{1}{2}x\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)

Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 13:17

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)

Ly Le
Xem chi tiết
Pham Van Hung
11 tháng 9 2018 lúc 18:18

Đặt \(x^2+x+1=t\) 

Ta có: \(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)

\(=t^2+3xt+2x^2\)

\(=t^2+xt+2xt+2x\)

\(=t\left(t+x\right)+2x\left(t+x\right)\)

\(=\left(t+x\right)\left(t+2x\right)\)

\(=\left(x^2+x+1+x\right)\left(x^2+x+1+2x\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+3x+1\right)\)

\(=\left(x+1\right)^2\left(x^2+3x+1\right)\)

Chúc bạn học tốt.

Thư Anh Nguyễn
Xem chi tiết
Lê Xuân Phú
Xem chi tiết
Nguyễn Phương Uyên
2 tháng 8 2020 lúc 10:52

F=x2+2xy+y2-x-y-12 

= (x + y)^2 - (x + y) - 12 

= (x + y)(x + y - 1) - 12

đặt x + y = t

F = t(t - 1) - 12

= t^2 - t - 12

=  (t - 4)(t + 3)

G=(x2-3x-1)2-12(x2-3x-1)+27

đăth x^2 - 3x - 1 = t

G = t^2 - 12t + 27

= (t - 3)(t - 9)

có t = x^2 - 3x - 1

thay vào 

Khách vãng lai đã xóa
Phạm Hữu Nam chuyên Đại...
2 tháng 8 2020 lúc 10:53

Câu F ( kiểm tra lại đề )

 Câu G . Đặt x^2 -3x-1=t

 t^2 -12t+27 ( thực hiện pp tách)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
2 tháng 8 2020 lúc 10:56

\(F=x^2+2xy+y^2-x-y+12\)

\(=\left(x+y\right)^2-\left(x+y\right)+12\)

\(=\left(x+y-\frac{1}{2}\right)^2+\frac{47}{4}>0\) thì làm sao phân tích nhân tử :)

\(G=\left(x^2-3x-1\right)-12\left(x^2-3x-1\right)+27\)

\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)

Khách vãng lai đã xóa
hải hà
Xem chi tiết
Nguyễn Linh Chi
24 tháng 8 2019 lúc 16:50

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu a nhé!

Minh Võ
Xem chi tiết
Ly Le
Xem chi tiết
tam Nguyen
11 tháng 9 2018 lúc 15:56

Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)

=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)

Lê Thị Khánh Linh
Xem chi tiết
thi hue nguyen
Xem chi tiết
shitbo
15 tháng 8 2019 lúc 15:39

\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\) 

=

Huyền Nhi
15 tháng 8 2019 lúc 15:41

a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)   (1)

Đặt x2 + x +1 = t 

Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)

\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)

Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)

b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)  (2)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt x2 + 7x + 11 = y

Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)

Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)