phân tích đa thức sau thành nhân tử G=(4x+1)(12x-1)(3x+2)(x+1)-4 = phương pháp đặt ẩn phụ
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
(x2+4x+8)2+3x(x2+4x+8)+2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\dfrac{1}{4}x^2=\left(x^2+\dfrac{11}{2}x+8\right)^2-\left(\dfrac{1}{2}x\right)^2=\left(x^2+\dfrac{11}{2}x+8-\dfrac{1}{2}x\right)\left(x^2+\dfrac{11}{2}x+8+\dfrac{1}{2}x\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
phân tích đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ :
\(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)
Đặt \(x^2+x+1=t\)
Ta có: \(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)
\(=t^2+3xt+2x^2\)
\(=t^2+xt+2xt+2x\)
\(=t\left(t+x\right)+2x\left(t+x\right)\)
\(=\left(t+x\right)\left(t+2x\right)\)
\(=\left(x^2+x+1+x\right)\left(x^2+x+1+2x\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+3x+1\right)\)
\(=\left(x+1\right)^2\left(x^2+3x+1\right)\)
Chúc bạn học tốt.
Phân tích đa thức thành nhân tử (đặt ẩn phụ)
a) (6x+7)^2(3x+4)(x+1)-6
b) (x-2)^2(2x-5)(2x-3)-5
c) (2x-1)(x-1)(x-3)(2x+3)+9
d) (4x+1)(12x-1)(3x+2)(x+1)-4
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
F=x2+2xy+y2-x-y+12
G=(x2-3x-1)2-12(x2-3x-1)+27
F=x2+2xy+y2-x-y-12
= (x + y)^2 - (x + y) - 12
= (x + y)(x + y - 1) - 12
đặt x + y = t
F = t(t - 1) - 12
= t^2 - t - 12
= (t - 4)(t + 3)
G=(x2-3x-1)2-12(x2-3x-1)+27
đăth x^2 - 3x - 1 = t
G = t^2 - 12t + 27
= (t - 3)(t - 9)
có t = x^2 - 3x - 1
thay vào
Câu F ( kiểm tra lại đề )
Câu G . Đặt x^2 -3x-1=t
t^2 -12t+27 ( thực hiện pp tách)
\(F=x^2+2xy+y^2-x-y+12\)
\(=\left(x+y\right)^2-\left(x+y\right)+12\)
\(=\left(x+y-\frac{1}{2}\right)^2+\frac{47}{4}>0\) thì làm sao phân tích nhân tử :)
\(G=\left(x^2-3x-1\right)-12\left(x^2-3x-1\right)+27\)
\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
phân tick đã thức sau thành nhân tử( sử dung phương pháp đặt ẩn phụ)
4(x+5)(x+6)(x+10)(x+12) - 3x^2
(x^2+3x+1)(x^2+3x+2)-6
3x^6-4x^5+2x^4-8x^3+2x^2-4x+3
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu a nhé!
Dùng phương pháp đặt biến số phụ, phân tích các đa thức sau thành nhân tử
a. (x^2 + x)^2 - 2(x^2 + x) - 15
b. (x+2)(x+3)(x+4)(x+5) - 24
c. (x^2 + 8x + 7)(x^2 + 8x + 15) + 15
d. (x^2 + 3x + 1)(x^2 + 3x + 2) - 6
e. (4x+1)(12x-1)(3x+2)(x+1) - 4
f. 4(x+5)(x+6)(x+10)(x+12) - 3x^2
g. 3x^6 - 4x^5 + 2x^4 - 8x^3 + 2x^2 - 4x + 3
phân tích đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ :
\(A=\left(x^2-3x+2\right)\left(x^2-3x-6\right)+12\)
Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)
=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)
Phân tích đa thức thành nhân tử bằng phương pháp dùng ẩn phụ :
A = ( 4x - 2 ).( 10x + 4 ).( 5x + 7 ).( 2x + 1 )
phân tích đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ
c) (x2+x+1)(x2+x+2)-12
d)(x+2)(x+3)(x+4)(x+5)-24
\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\)
=
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\) (1)
Đặt x2 + x +1 = t
Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) (2)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = y
Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)