Cho hình thang ABCD( AB//CD) có AB=3cm, CD=7cm.Chứng minh AD+BC > 4 cm
Cho hình thang ABCD có AB song song CD, AB = 4 cm , CD = 10cm , AD = 3cm. Gọi O là giao điểm của các đường thẳng AD, BC. Tình OA
Xét ΔODC có AB//DC
nên \(\dfrac{OA}{OD}=\dfrac{AB}{DC}\)
=>\(\dfrac{OA}{OA+AD}=\dfrac{4}{10}=\dfrac{2}{5}\)
=>\(\dfrac{OA}{OA+3}=\dfrac{2}{5}\)
=>5OA=2(OA+3)
=>5OA=2OA+6
=>3OA=6
=>OA=2(cm)
Cho hình thang cân ABCD có AB//CD, AB = 2cm, CD = 6cm, AD = BC = 3cm. Tính
diện tích hình thang ABCD
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
Cho hình thang ABCD có đáy AB và CD, biết AB=4cm, CD=8cm, BC=5cm ,AD=3cm. CM : ABCD là hình thang vuông
GIÚP TỚ VỚI !!! MAI NỘP RỒI
Kẻ BH//AD(H∈CD)BH//AD(H∈CD), kẻ BD
Ta có:
+) AB//CD (hình thang ABCD)
⇒B2ˆ=D1ˆ⇒B2^=D1^ ( 2 góc so le trong )
+) BH//AD (cách vẽ)
⇒D2ˆ=B1ˆ⇒D2^=B1^ ( 2 góc so le trong)
Xét ΔDABΔDAB và ΔBHDΔBHD, ta có:
B2ˆ=D1ˆ(cmt)B2^=D1^(cmt)
BD : chung
D2ˆ=B1ˆ(cmt)D2^=B1^(cmt)
⇒⇒ ΔDABΔDAB = ΔBHDΔBHD (gcg)
⇒AD=BH⇒AD=BH
mà AD=3cm(gt)AD=3cm(gt)
⇒BH=3cm⇒BH=3cm
+) ΔDABΔDAB = ΔBHDΔBHD (cmt)
⇒AB=DH⇒AB=DH
mà AB=4cm(gt)AB=4cm(gt)
⇒DH=4cm⇒DH=4cm
+) DH+HC=DC(H∈DC)DH+HC=DC(H∈DC)
⇒4+HC=8⇒4+HC=8
⇒HC=4cm⇒HC=4cm
Xét ΔBHC,ΔBHC, ta có:
52=32+4252=32+42
⇒BC2=BH2+HC2⇒BC2=BH2+HC2 (Định lý Py-ta-go)
⇒ΔBHC⇒ΔBHC vuông tại H
⇒H1ˆ=900⇒H1^=900
+) AD//BH
⇒ADHˆ=H1ˆ⇒ADH^=H1^ (2 góc động vị)
⇒ADHˆ=900⇒ADH^=900
⇒⇒ Hình thang ABCD là hình thang vuông
Bạn ơi 900 là 90 độ nha
1. Cho hình thang ABCD ( AB//CD) có các tia phân giác của các góc A và D gặp nhau tại điểm I thuộc cạnh bên BC . Chứng minh AD bằng tổng của hai đáy
2. Hình thang ABCD(AB//CD) có AB=2cm,CD=5cm.Chứng minh AD+BC>3cm
Hình thang ABCD ( AB song song với CD ) có AB = 3cm, CD = 7 cm, AD = 10cm. Gọi M là trung điểm của BC. Chứng minh AM vuông góc với DM.
Lấy n là trung điểm của ad NM=5cm. Mà N là trung điểm của ad => an=mn=5cm => NM=\(\frac{1}{2}\)ad . Xét tam giác ADN có NM=\(\frac{1}{2}\)ad
=> Tam giác amd vuông ở m hay am vuông góc dm.
Hình thang ABCD (AB//CD) có AB=2cm, CD=5cm. Chứng minh rằng AD+BC>3cm
bạn tham khảo tại đây nhé, mk bận ko thể giải cho bn dc, thông cảm nha, h mk phải ik ăn đám cứ r, chúc bn hc tốt nhé
http://pitago.vn/question/a-dung-hinh-thang-abcd-ab-cd-biet-day-ab-2-cm-hai-10453.html
trên CD lấy điểm H sao cho DH=AB
Tứ giác ABHD có DH=AB và DH//AB
=>ABHD là HBH
=>AD=BH
DH+HC=CD
2+HC=5
=>HC=3
áp dụng BĐT tam giác trong tam giác BHC ta có
BH+BC>HC
hay AD+BC>3
Hình thang ABCD ( AB//CD ) có AB=2cm CD=5cm. Chứng minh rằng AD+BC>3cm
Hình thang ABCD ( AB//CD ) có AB=2cm CD=5cm. Chứng minh rằng AD=BC>3cm
Đề sửa lại: Hình thang ABCD ( AB//CD ) có AB=2cm CD=5cm. Chứng minh rằng AD + BC>3cm
Giải:
Tg ADC có DC - AD < AC (bất đằng thức tam giác)(1)
tg ABC có AC < AB + BC (bất đằng thức tam giác)(2)
Từ (1) và (2) => DC - AD < AB + BC => DC - AB < AB + BC
mà AB=2cm CD=5cm => 5 - 2 < AB + BC hay AB + BC > 3 (đpcm)
Chúc bạn thành công!
Giải: (sửa giúp)
...v.v...
Từ (1) và (2) => DC - AD < AB + BC => DC - AB < AD + BC
Cho hình thang ABCD có đáy AB và CD, biết AB = 4 cm, CD = 8cm, BC = 5 cm, AD = 3 cm.
Chứng minh: ABCD là hình thang vuông.
từ A kẻ đường thẳng song song với BC cắt CD tại E
\(\Rightarrow\)tứ giác ABCE là hình bình hành \(\Rightarrow\)AB=CE=4cm;AE=BC=5cm\(\Rightarrow\)DE=CD-EC=4cm
xét \(\Delta\) ADE có:AD2+DE2=32+42=25
AE2=52=25\(\Rightarrow\)AD2+DE2=AE2
\(\Rightarrow\Delta\)ADE vuông tại D \(\Rightarrow AD\perp DE\) hay \(AD\perp DC\)
\(\Rightarrow\)tứ giác ABCD là hình thang vuông
Bn oi mk chưa hk hình bình hành. Có cách khác ko bn?
Vẽ BH \(//\)DA ( H \(\in\)DC )
Tứ giác ABHD có: AB \(//\)DH
BH \(//\)DA
\(\Rightarrow\)ABHD là hình bình hành
\(\Rightarrow\)AB = DH = 4 cm ; BH = DA = 3 cm
HC = DC - DH =8 - 4 = 4 cm
Ta có: BC2 = 52 = 25
BH2 + HC2 = 32 + 42 = 25
\(\Rightarrow\)BC2 = BH2 + HC2 \(\Rightarrow\)\(\Delta BHC\)vuông tại H ( định lý Pytago đảo) \(\Rightarrow\)\(\widehat{BHC}\)= 90 độ
AD \(//\)BH \(\Rightarrow\)\(\widehat{ADC}\)= \(\widehat{BHC}\)= 90 độ ( đồng vị ) \(\Rightarrow\)ABCD là hình thang vuông