Tìm các giá trị của A để \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)
cho biểu thức:
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm các giá trị của x để A=1
\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)
\(A=\left(x-3\right)-\left(x+3\right)\)
\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)
\(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)
Vậy ko có giá trị của x.
mk ko biết đâu
mk mới hok lớp 5 thui
chúc bạn hok tốt nhé
kb với mk nha
Txđ: x thuộc R
A= \(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)= |x-3| -|x+3|
Th1: với x>=3 thì A= x-3-x-3= -6
TH2: với x thuộc [-3,3) thì A = -x +3 -x-3= -2x
Th3: với x < -3 thì A = -x+3+x+3 = 6
b. A=1 thuộc TH2 câu a
-2x=1 => x= -1/2 thỏa mãn x thuộc (-3,3) vậy A=1 khi x=-1/2
\(1chobieuthucA=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a)rút gọn A
b)tìm các giá trị của x để A=1
=\(\left|x-3\right|-\left|x+3\right|\)
*x>0
=x-3-x+3
=0
*x<0
=3-x-3+x
=0
A=\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x-9}\)
a, Tìm đkxđ
b, Rút gọn A
c, Tìm giá trị của x để A =1
Cho biểu thức :
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A=1
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)
\(TH1:x-3>=0\)
\(< =>x+3>=0\)
\(\left|x-3\right|-\left|x+3\right|=1\)
\(x-3-x-3=1\)
\(-6=1\)(loại)
\(TH2:x-3< =0\)
\(x+3>=0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x-x-3\)
\(-2x=1\)
\(x=-\frac{1}{2}\left(TM\right)\)
\(TH3:x-3< =0\)
\(x+3< =0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x+X+3=1\)
\(6=1\)(loại)
\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)
Cho biểu thức B =
\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) Rút gọn
b) Tìm giá trị của x để B=1
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Hàm số xác định trên R khi và chỉ khi:
a.
\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
b.
\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm
\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)
\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)
c.
\(x^2+6x+2m-3>0\) với mọi x
\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)
\(\Leftrightarrow m>6\)
e.
\(-x^2+6x+2m-3>0\) với mọi x
Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn
f.
\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)
\(\Leftrightarrow1< m< 3\)
tìm giá trị nhỏ nhất của P = \(\sqrt{x^2+6x+9}+\sqrt{x^2-6x+9}\)
P=/ x+3/+/3-x/ >_ /x+3+3-x/
P >_6
min P là 6
dấu bằng xảy ra
( X+3)(3-X)>_ 0
-3_<X_<3
Tìm giá trị nhỏ nhất của:
1) A = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
2) B = \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
Nhớ làm đầy đủ nha mọi người
Tìm các giá trị của x sao cho:
\(a,\sqrt{x^2-3}=x^2-3\)
\(b,\sqrt{x^2-6x+9}=6-x\)
a) ĐKXĐ : \(\orbr{\begin{cases}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{cases}}\)
\(\sqrt{x^2-3}=x^2-3\)
\(\Leftrightarrow\sqrt{x^2-3}=\sqrt{x^2-3}\cdot\sqrt{x^2-3}\)
\(\Leftrightarrow\sqrt{x^2-3}-\sqrt{x^2-3}\cdot\sqrt{x^2-3}=0\)
\(\Leftrightarrow\sqrt{x^2-3}\left(1-\sqrt{x^2-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-3}=0\\\sqrt{x^2-3}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x^2-3=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm\sqrt{3}\right\}\\x\in\left\{\pm2\right\}\end{cases}}\)( thỏa mãn )
b) ĐKXĐ : \(x\le6\)
\(\sqrt{x^2-6x+9}=6-x\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=6-x\)
\(\Leftrightarrow\left|x-3\right|=6-x\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=6-x\\x-3=x-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=9\\0x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x\in\varnothing\end{cases}}\)( thỏa mãn )