so sánh:
\(A=1^2 +3^2+...+19^2+21^2\)
\(B=2^2+4^2+6^2+...+18^2+20^2\)
so sánh: A= 12+ 32+ 52+....+ 192+ 212. và B= 22+ 42+ 62+...+ 182+ 202.
Ta có: 21 > 20 > 0; 19 > 18 > 0; ...; 2 > 1 > 0
=> 21^2 > 20^2; 19^2 > 18^2; ...; 3^2 > 2^2; 1^2 > 0
+ 18^2 +...+2^2 + 0 => A > B
so sánh A và B biết A =1^2+3^2+5^2+...+21^2, B=2^2+4^2+6^2+...+20^2
Ta dễ dàng nhận thấy :
\(1^2>0;3^2>2^2;5^2>4^2;...;21^2>20^2\)
Cộng theo vế ta được :
\(1^2+3^2+5^2+...+21^2>0+2^2+4^2+...+20^2\)
Hay \(A>B\)
Ta có:A có số số hạng là:(21-1):2+1=11(số số hạng)
B có số số hạng là:(20-2):2+1=10(số số hạng)
Khi đó ta có:\(B-A=\left(2^2+4^2+...+20^2\right)-\left(1^2+3^2+...+21^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(20^2-19^2\right)-21^2\)
\(=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(19+20\right)\left(20-19\right)-21^2\)
\(=1+2+3+4+...+19+20-21^2=\frac{\left(1+20\right)20}{2}-21^2=21.10-21^2< 21^2-21^2=0\)
\(\Rightarrow B-A< 0\Rightarrow B< A\)
Vậy B<A
Cho A= \(2\sqrt{1}+2\sqrt{3}+...+2\sqrt{19}\) và B=\(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}\)
So sánh A và B
Cho \(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2.\sqrt{19}\)
và \(B=2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}\)
So sánh A và B
Cho \(A=2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}\)
và \(B=2\sqrt{2}+2\sqrt{4}+2.\sqrt{6}+....+2.\sqrt{18}+\sqrt{20}\)
So sánh A và B
So sánh A và B
A=2√1 + 2√3 + 2√5 +...+2√19 + 2√21
B= 2√2 + 2√4 + 2√6 +...+ 2√20 + √22
Chú thích
√ là căn do đt ko có dấu căn nên dùng tạm
😅😅😅
\(A=2\sqrt{1}+2\sqrt{3}+...+2\sqrt{21}\)
\(A=2.\left(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\right)\)
\(B=2\sqrt{2}+2\sqrt{4}+....2\sqrt{22}\)
\(B=2.\left(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\right)\)
Có \(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\) Có 11 số hạng.
\(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\) Có 11 số hạng.
Mà \(\hept{\begin{cases}\sqrt{1}< \sqrt{2}\\....\\\sqrt{21}< \sqrt{22}\end{cases}}\)
=> \(2.\left(\sqrt{1}+\sqrt{3}+...+\sqrt{21}\right)< 2.\left(\sqrt{2}+\sqrt{4}+...+\sqrt{22}\right)\)
\(\Rightarrow A< B\)
SO SÁNH:
A=\(1^2+3^2+...+19^2+21^2\)
B=\(2^2+4^2+...+18^2+20^2\)
Ta co:
21>20>0 ; 19>18>0 ;.........;2>1>0
\(\Rightarrow21^2>20^2;19^2>18^2;......;3^2>2^2;1^2>0\Rightarrow1^2+3^2+....+21^2>20^2+18^2+......+2^2+0\Rightarrow A>B\)
So sánh A và B
A=2√1+2√3+2√5+....+2√19+2√21
B=2√2+2√4+2√6+...+2√20+√22
√ là căn nhé do đt ko có nút căn nên dung tạm 😅😅😅 mà để ý là√22 nhé chứ ko phải 2√22 đâu
fffffffffffffff
các bạn giải cho mình bài toán này với so sánh: A=\(2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+.......+2\sqrt{19}\)và B= \(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+....+2\sqrt{18}+\sqrt{20}\)