Bài 5: Tìm số tự nhiên n để n-1;n+7;n+9 là số nguyên tố
Bài 1. Tìm số tự nhiên n lớn nhất để tích các số tự nhiên từ 1 đến 1000 chia hết cho 5n.
muốn các số tự nhiên từ 1 đến 1000 chia hết cho 5^n
=>5^n=1
=>5^n=5^0
=>n=o
vậy n=0
Giải : Các bội của 5 trong dãy 1 , 2 ,3 ... , 1000 là 5 , 10 , ... , 1000 gồm :
( 1000 - 5 ) : 5 + 1 = 200 ( số ).
Các bội của 52 là 25 , 50 , ... , 1000 gồm :
( 1000 - 25 ) : 25 + 1 = 40 ( số ).
Các bội của 53 là 125 , 250 , ... , 1000 gồm :
( 1000 - 125 ) : 125 + 1 = 8 ( số ).
Các bội của 54 là 625 gồm 1 số.
Do đó số thừa số 5 khi phân tích 1.2.3 . ... 1000 ra thừa số nguyên tố là : 200 + 40 + 8 + 1 = 249.
Vậy số n lớn nhất để tích 1 . 2. 3 . ... 1000 chia hết cho 5n là 249.
cho bao nhiêu hộp, mỗi hộp có bao nhiêu viên bi? Biết số hộp lớn hơn 6 và nhỏ hơn 30 Bài 5. Tìm số tự nhiên n để: a) n 4 là bội của n. b) n1 là ước của n 5. c) 2 2 n là bội của n3. d*) 2 –1 n là ước của 3 2. n Bài 6. Tìm số tự nhiên n để a) 17.n là số nguyên tố. b) n n 2 . 4 là số nguyên t cần gấp
Bài 1: Tìm số tự nhiên n để:
a) (3n + 1) ⋮ (n - 1) b) (n - 3) ⋮ (2n - 1)
Bài 2:
a) Tìm số tự nhiên có hai chữ số giống nhau, biết rằng số đó chia hết cho 2 và còn chia cho 5 thì dư 2.
b) Tìm số có ba chữ số giống nhau, biết rằng số đó chia hết cho 5, còn chia 2 thì dư 1.
c) Tìm số có hai chữ số giống nhau, biết rằng số đó chia hết cho 3 và chia cho 5 thì dư 1.
d) Tìm tập hợp các số tự nhiên vừ chia hết cho 2, vừa chia hết cho 5 và 132 < x < 178.
Bài 3: Tìm các số tự nhiên x,y biết:
a) \(\overline{23x5y}\) chia hết cho 2, 5 và 9
b)\(\overline{2x3y}\) chia hết cho 2, 5 và chia cho 9 dư 1
c) \(\overline{2x3}\) + \(\overline{3y5}\) chia hết cho 9 và x - y = 3
d) \(\overline{x378y}\) chia hết cho 72
Bài 4: Tìm tất cả các số tự nhiên n sao cho:
a) (n + 7) ⋮ (n + 1) b) (3n + 19) ⋮ (3n - 2) c) (4n +29) ⋮ (2n + 1)
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Bài 5.5: Tìm x: (2x-3)(x+1)+(4x\(^3\)-6x\(^2\)-6x):(-2x)=18
Bài 6.1: Tìm số tự nhiên n để: 5x\(^{n-2}\):3x\(^2\)
Bài 6.2: Tìm số tự nhiên n để đa thức x\(^{n-1}\)-3x\(^2\):2x\(^2\)
Bài 6.3: Tìm n ∈ N để phép tính chia sau là phép chia hết:
3x\(^7\)y\(^7\)-4x\(^6\)y\(^6\)-5x\(^3\)y\(^3\):(2x\(^n\)y\(^n\))
Trả lời nhanh giúp mìn nhóe!
Bài 5.5:
\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)
\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=\dfrac{18}{2}\)
\(\Leftrightarrow x=9\)
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
Bài 1: Tìm số tự nhiên có 3 chữ số abc, biết rằng: acb 2 và 495 cbaabc . Bài 2: a)Tính nhanh: 1979.19781979.1980 195821.19801979.1978 b)Rút gọn: 2 11 2 2 6 2 12 4 2 3 5 .6 .16 6 .12 .15 2.6 .10 81 .960 Bài 3: Tìm số tự nhiên n để phân số 43 996 n n a)Có giá trị là số tù nhiên. b)Là phân số tối giản. Bài 4: Cho 2 3 4 1 12 1 2 3 11 ... ... 5 5 5 5 5n n A với n
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.Giúp mình mấy bài này nha
bài 1 : Tìm n thuộc N để phân số 2n-1/3n+2 có giá trị là số nguyên dương
Bài 2: Tìm n thuộc N để phân số n+3/4n-1 có giá trị là số nguyên âm
Bài 3: Tìm n thuộc N để phân số 2n+5/3n+1 có giá trị là số tự nhiên