Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiên Ngân
Xem chi tiết
Girl
14 tháng 10 2018 lúc 10:55

\(D=x^2+y^2-4x-4y+16\)

\(D=\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)

\(D=\left(x-2\right)^2+\left(y-2\right)^2\ge8\)

\("="\Leftrightarrow x=y=2\)

An Hau
Xem chi tiết
Le Thi Khanh Huyen
24 tháng 7 2016 lúc 21:12

\(x^2-12x+33\)

\(=\left(x^2-2.6x+6^2\right)-3\)

\(=\left(x-6\right)^2-3\)

Ta có :

\(\left(x-6\right)^2\ge0\)

\(\Rightarrow\left(x-6\right)^2-3\ge-3\)

\(\Rightarrow GTNN\)của \(\left(x-6\right)^2-3=-3\Leftrightarrow x-6=0\Leftrightarrow x=6\)

Ichigo Sứ giả thần chết
24 tháng 7 2016 lúc 21:17

\(x^2-12x+33\)

\(=x^2-2.x.6+6^2-6^2+33\)

\(=\left(x-6\right)^2-6^2+33\)

\(=\left(x-6\right)^2-3\)

Vì \(\left(x-6\right)^2\ge0\) với mọi x

nên \(\left(x-6\right)^2-3\ge-3\)

=> GTNN của f(x) là -3 khi \(\left(x-6\right)^2=0\) => x = 6

Nguyễn Hùng Sơn
Xem chi tiết
Kurosaki Akatsu
23 tháng 4 2017 lúc 12:34

B = (x2 - 16) + |y - 3| - 2 

B = x- 16 - 2 + |y + 3|

B = x2 - 18 + |y + 3|

Ta có :

x2 \(\ge0\)

|y + 3| \(\ge0\)

=> x2 + |y + 3| \(\ge0\)

=> x2 - 16 + |y + 3| \(\le16\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)

Nguyễn Huy Tú
23 tháng 4 2017 lúc 12:34

Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)

Mà \(\left|y-3\right|\ge0\)

\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)

\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)

Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)

Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3

Nguyễn Huy Tú
23 tháng 4 2017 lúc 12:37

xin lỗi bạn, x = 0 nhé, mk nhìn nhầm...

Xuân Chiến Đặng
Xem chi tiết
Duy Đức Anh Nguyễn
29 tháng 3 2021 lúc 15:29

có làm mới có ăn nha em

Phương Thu
Xem chi tiết
Hiền Nguyễn
Xem chi tiết
bepro_vn
3 tháng 9 2021 lúc 14:15

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 17:38

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)

Linh Nguyen
Xem chi tiết
Tuyết Nhi channel
Xem chi tiết
Vũ Ngọc Thảo Nguyên
Xem chi tiết