cho tam giác ABC có 3 góc nhọn. gọi O là trung điểm của BC. gọi D là điểm đối xứng của A qua BC; E là điểm đối xứng của A qua O. cmr: BCED là hình thang cân
Cho ∆ABC có 3 góc nhọn. Gọi O là trung điểm của BC. Gọi D là điểm đối xứng của A qua BC, E là điểm đối xứng của A qua O. Cm BCED là hình thang cân.
Cho tam giác ABC có ba góc nhọn. Gọi O là trung điểm của BC. Gọi D là điểm đối xứng của A qua BC; E là điểm đối xứng của A qua O.
Đề yêu cầu CMR : BCED là hình thang cân ??
Ta có : A đối xứng D qua BC , gọi AD cắt BC tại H ta có AD \(\perp\) BC tại H và AH = HD
Xét tg ADE ta có ; AH = HD , AO = OE
=> OH // DE hay BC // DE .
tứ giác BCED có BC//DE => BCED là hih thang .
Xét tg OAB và tg OEC có :
OB = OC , OA = OE , góc AOB = góc COE
=> tg OAB = tg OEC => góc ABO = góc OCE (1).
Có : BH \(\perp\) AD tại trung điểm H của AD
=> BAD cân tại B => góc ABH = góc HBD (2) .
Từ (1) và (2) có : góc HBD = góc OCE
=> hih thang BCED có : góc HBD = góc OCE
=> BCED là hih thang cân .
Xem thêm tại : Câu hỏi của Quang Trần - Toán lớp 8 | Học trực tuyến ( https://h.vn/hoi-dap/question/674960.html )
Gợi ý cho bạn
Cho tam giác ABC có 3 góc nhọn(AB<AC). Gọi H là trực tâm, O là giao điểm của 3 đường trung trực của tam giác. Gọi D là điểm đối xứng của điểm A qua O.
a)Chứng minh rằng tứ giác BHCD là hình bình hành
b)Gọi M là trung điểm của BC, chứng minh AH=2MO
bài 1 Cho tam giác nhọn ABC có AB<AC , đương cao D và CE cắt nhau tại H. I là trung BC . Gọi K là đối xứng của H qua I , M là điểm đối xứng qua BC
a, Cm BHCk là hình bình hành
b, gọi o là trung điểm DK . chứng minh O là giao điểm của 3 đường trung trực của tam giác ABC
c, Cm AK vuông góc DE
Giúp mình với tối mai đi hc rồi
câu a thì dễ mà caaub vẽ thế nào cx ko là giao ba đường đấy
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn ( ) O . Gọi M là trung điểm của cạnh BC và N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:
b) CD đi qua trung điểm của đường cao AH của tam giác ABC .
b) CD đi qua trung điểm của đường cao AH của D ABC
· Gọi F là giao của BD và CA.
Ta có BD.BE= BA.BM (cmt)
= > B D B A = B M B E = > Δ B D M ~ Δ B A E ( c − g − c ) = > B M D = B E A
Mà BCF=BEA(cùng chắn AB)
=>BMD=BCF=>MD//CF=>D là trung điểm BF
· Gọi T là giao điểm của CD và AH .
DBCD có TH //BD = > T H B D = C T C D (HQ định lí Te-let) (3)
DFCD có TA //FD = > T A F D = C T C D (HQ định lí Te-let) (4)
Mà BD= FD (D là trung điểm BF ) (5)
· Từ (3), (4) và (5) suy ra TA =TH ÞT là trung điểm AH .
Cho tam giác ABC nhọn có AB< AC, các đường cao BD và CE cắt nhau tại H, I là trung điểm của BC. Gọi K là điểm đối xứng với H qua I, M là điểm đối xứng với H qua đường thẳng BC.
a, Các tứ giác BHCK,BCKM là hình gì?
b, Gọi O là trung điểm của AK. Chứng minh O là giao điểm cảu ba đường trung trưc của tam giác ABC
c, Chứng minh rằng AK vuông góc với DE
4) Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.
Thiếu yêu cầu đề bài. Bạn coi lại đề.
1. cho tam giác ABC , gọi m là đường trung trực của BC . Vẽ điểm D đối xứng với A qua m .
a, tìm các đoạn thẳng đối xứng với AB , AC qua m
b, Xác định dạng tứ giác ABCD
2. Cho tam giác ABC . Trên đường thẳng d lấy điểm M ≠≠A . C/m : AB + AV < BM+MC
3. Cho tam giác nhọn ABC , M thuộc cạnh BC , gọi D là điểm đối xứng với M qua AB , gọi E là điểm đối xứng với M qua AC , gọi I , K là giao điểm của DE với AB , AC . c/m : MA là tia phân giác của góc IMK
help me
Bài 2 : c/m là AB+AC<BM+MC nha mấy bạn giúp mk vs
ho tam giác BEC có 3 góc nhọn ( EB < BC ). Dường cao BA . Gọi I ; N lần lượt là trung điểm của Bc và AC .
a) Gọi M là điểm đối xứng của A qua I . C/m ABMC là hình chữ nhật
b) Gọi D là điểm đối xứng của I qua AC. Tứ giác ADCI là hình j? Ví sao ?
c) Vẽ AH vuông góc vs BC. C/m HA . AM = MC . CA
d) Đường thẳng BN cắt DC tại K. C/m diện tích ADC = 3 diện tích ADK
bạn vẽ hình rồi chụp cho mình giải cho
a) Ta có: M là điểm đối xứng của A qua I
=> I là trung điểm của MA(t/c)
I là trung điểm của BC(gt)
Xét tứ giác ABMC có:
2 đường chéo cắt nhau tại trung điểm mỗi đường
=> tứ giác ABMC là hình chữ nhật(dhnb)
câu b là sao v? xem lại giúp mk cái đề với
1. Cho tam giác nhọn ABC ( AB≠AC) có các đường cao BD, CE cắt nhau tại H. Gọi O là giao điểm ba đường trung trực của tam giác ABC. M là trung điểm của BC. Gọi F là điểm đối xứng với A qua O.
a) Chứng minh: F đối xứng với H qua M.
b) HO cắt AM tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Giả sử AH=BC. Chứng minh HG đi qua trung điểm của đoạn thẳng DE.
2. Cho 2021 điểm phân biệt trong đó không có ba điểm nào thẳng hàng nằm trong hình chữ nhật (kể cả trên các cạnh) có kích thước 10\(\times\)101cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2021 điểm đã cho có diện tích không vượt quá 1 cm2.
1
a) ta có A đối xứng với F qua O => O là trung điểm của AF
=> BO là trung tuyến của AF (1)
=> CO là trung tuyến của AF (2)
ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC
=> OA = OB =OC (3)
từ 1-2-3 => Góc ABF = góc ACF = 90
=> AB vuông góc với FB
AC vuông góc với FC
mà CH vuông góc AB => CH // BF
BH vuông góc với AC => BH//CF
Xét tứ giác BHCF có
CH // BF
BH//CF
=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo
M là trung điểm của BC
=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM
=> H đối xứng với F qua M
b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF
=> OM là đường trung bình
=> OM =1/2AH <=> AH/OM=2
vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC
ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )
=> OM // AH => góc HAG =góc GMO (2 góc so le trong)
xét tam giác AHG và tam giác MOG
có :góc HGA =góc MGO (2 góc đối đỉnh)
góc HAG =góc GMO (cmt)
=> đồng dạng (gg) => AH /OM = AG/MG =2
<=> AG=2MG <=> AM = AG + MG =3MG
<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)
=> G là trọng tâm của tma giác ABC