Cho hình bình hành ABCD. Gọi E, F tương ứng là trung điểm của cd và ab.
Gọi J là giao điểm của BE với CF. Chứng minh rằng 4HJ=HC
Cho hình bình hành ABCD. Gọi E, F tương ứng là trung điểm của CD và AB
a,chứng minh AECF là 1 hình bình hành
b,AE cắt DB tại I,còn CF cắt BD tại H.Chứng minh DI=IH=HB
c, gọi J là giao điểm của BE với CF.Chứng minh rằng 4HJ=HC
GIUPSVOWIS KHẨN CẤP CHẾT NGƯỜI 3 TICK MIỄN PHÍ NGAY
Tham Khảo Nha :
Xét hbh ABCD có :
AB = CD; AB // CD
Mà e là trg điểm của AB, E là trg điểm của CD
=> AF//EC, AF=EC
=> Tứ giác AFEC là hbh
b/ Xét tam giác DHC có:
IE//HC( hbh AFEC)
E là trg điểm của DC
=> I là trg điểm của DH (1)
chứng minh tương tự tam giác AIB
=> H là trg điểm của IB (2)
Từ (1) và (2) => đpcm
c/Xét tam giác DHC có:
I là ttrg điểm của DH
E là trg điểm của DC
=> IE là đg trbình của tg DHC
=> IE= 1/2 HC (3)
Xeý tg IEB có:
H là trg điểm của IB
HJ // IE (AE// FC; J thuộc FC)
=> J là trung điểm của BE
=> HJ là đg trbình của tg BIE
=> HJ = 1/2 IE (4)
Từ (3) và (4) => HJ = 1/4 HC hay 4HJ = HC
a, Xét tứ giác AECF có:
AF = CE ( AB = CD )
AF // CE ( AB // CD )
=> AECF là hình bình hành ( đpcm )
b, Xét \(\Delta ABI\) có:
F là trung điểm AB (gt)
AI // FH ( AE // CF )
=> FH là đg trung bình của \(\Delta ABI\)
=> HI = HB (1)
C/m tương tự ta có: EI là đg trung bình \(\Delta CDH\)
=> HI = HD (2)
Từ (1) và (2) => DI = IH = HB ( đpcm )
Bn tham khảo nhé, câu c mk chưa nghĩ ra, thấy bn đg gấp mà
Hok tốt
a, Vì ABCD là hbh nên ( AB = CD => AB/2 = CD/2 = AF = CE
( AB // CD => AF//EC
=> AFCE là hbh (dhnb...)
b)
b/ Xét tam giác DHC có:
IE//HC( hbh AFEC)
E là trg điểm của DC
=> I là trg điểm của DH (1)
chứng minh tương tự tam giác AIB
=> H là trg điểm của IB (2)
Từ (1) và (2) => đpcm
c/Xét tam giác DHC có:
I là ttrg điểm của DH
E là trg điểm của DC
=> IE là đg trbình của tg DHC
=> IE= 1/2 HC (3)
Xeý tg IEB có:
H là trg điểm của IB
HJ // IE (AE// FC; J thuộc FC)
=> J là trung điểm của BE
=> HJ là đg trbình của tg BIE
=> HJ = 1/2 IE (4)
Từ (3) và (4) => HJ = 1/4 HC hay 4HJ = HC
Cho hình bình hành ABCD. Gọi E, F tương ứng là trung điểm của CD và AB.
b) AE cắt BD tại I, còn CF cắt BD tại H. Chứng minh rằng DI=IH=HB
b: Xét tứ giác AFEC có AF//EC và AF=EC
nên AFEC là hình bình hành
Xét ΔDHC có
E là trung điểm của DC
EI//HC
Do đó: I là trung điểm của DH
Xét ΔBAI có
F là trung điểm của BA
FH//AI
Do đó: H la trung điểm của BI
=>DI=IH=HB
c: Vì BFEC là hình bình hành
nên BE cắt FC tại trung điểm của mỗi đường
=>H là trung điểm chung của BE và CF
Xét ΔBIE có BJ/BI=BH/BE
nên JH/IE=1/2
=>JH=1/2IE
Xét ΔDHC có DE/DC=DI/DH
nên EI//HC và EI=1/2HC
=>JH=1/4HC
=>HC=4JH
Cho hình bình hành ABCD. Gọi E, F tườn ứng là trung điểm của CD và AB
a)Chứng minh rằng AECF là một hình bình hành
b)AE cắt BD tại I, còn CF cắt BD tại H. Chứng minh rằng DI=IH=HB
c)Gọi J là giao điểm của BE với CF. Chứng minh rằng 4HJ=HC
a) Vì ABCD là hình bình hành
=> AB//CD hay AE//CF (1)
+) AB = CD ( vì là 2 cạnh đối)
=> 1/2 AB= 1/2 CD
=> AE = CF (2)
Từ (1) và (2)
=> 2 cạnh đối AE và CF song song và bằng nhau
=> tứ giác AECF là hình bình hành
Mk mới làm đc phần a thôi h mk bận r có j ib mk giải cho nha !!!
Xin lỗi bạn nhiều !!
Cho hình bình hành ABCD Vẽ AH vuông góc với BC tại E CF vuông góc với BD Tại F a). Chứng minh AECF là hình bình hành b). Gọi M là giao của AE và CD, n là giao của CF bà AB.Gọi O là trung điểm của AC chứng minh M,O,N thẳng hàng
Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo, E và F thứ tự là trung điểm của OD và OB.
1) Chứng minh: Tứ giác AECF là hình bình hành.
2) Tia AE cắt CD tại K, gọi H là trung điểm của KC. Chứng minh OH // CF.
3) Chứng minh : CF = 3EK
1: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Cho hình bình hành ABCD , các đường chéo cắt nhau tại O. Gọi E, F theo thứ tự là trung điểm của OD, OB. Gọi K là giao điểm của AE và CD. Chứng minh rằng: AE song song CF
Ta có: OB = OD (tính chất hình bình hành)
OE = 1/2 OD (gt)
OF = 1/2 OB (gt)
Suy ra: OE = OF
Xét tứ giác AECF, ta có:
OE = OF (chứng minh trên)
OA = OC (vì ABCD là hình bình hành)
Suy ra: Tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường ) ⇒ AE // CF
Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. Chứng minh rằng BE = CF.
mk sửa lại đề nha: chứng minh rằng BE = DF
ABCD là hình bình hành \(\Rightarrow\)AB = CD; AD = BC; \(\widehat{A}\)= \(\widehat{C}\)
E là trung điểm AD \(\Rightarrow\)EA = \(\frac{AD}{2}\)
F là trung điểm BC \(\Rightarrow\)CF = \(\frac{BC}{2}\)
mà AD = BC nên AE = CF
Xét \(\Delta\)AEB và \(\Delta\)CFD có:
AB = CD (cmt)
\(\widehat{A}\)= \(\widehat{C}\) (cmt)
AE = CF (cmt)
suy ra; \(\Delta\)AEB = \(\Delta\)CFD (c.g.c)
suy ra BE = DF (2 cạnh tương ứng)
Tứ giác BEDF có :
DE // BF ( vì AD // BC )
\(BE=BF\left(DE=\frac{1}{2}AD=\frac{1}{2}BC=BF\right)\)
\(\Rightarrow\)BEDF là hình bình hành
\(\Rightarrow\)\(BE=DF\)( đpcm )
Cho hình bình hành ABCD. Gọi H, K lần lượt là trung điểm của AB và CD.
1) Chứng minh AHKD là hình bình hành.
2) Gọi I là giao điểm của AK và DH; J là giao điểm của HC và KB. Chứng minh IJ//CD
v à I J 12 C D .
3) Chứng minh ba đường thẳng IJ, AC, HK đồng quy.
Cho hình bình hành ABCD. Gọi E sao cho BDCE là hình bình hành. Gọi F sao cho BDFC là hình bình hành. Chứng minh rằng:
a) A đối xứng E qua B
b) Điểm C là trung điểm của EF.
c) Ba đường thẳng AC, BF, DE cắt nhau tại một điểm.
d) Gọi M là giao điểm của CD và BF, N là giao điểm của AM và CF. Chứng minh: FC=3NC