Giai phuog trinh: \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-2}\)
can gap jup mk vs
giai phuong trinh\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)
<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)
<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)
<=> x = 5
Giai phuong trinh: x2 - 10x + 27= \(\sqrt{6-x}+\sqrt{x-4}\)
ĐKXĐ : \(4\le x\le6\)
Xét \(VP^2=6-x+x-4+2\sqrt{\left(6-x\right)\left(x-4\right)}=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)
Áp dụng bđt Cauchy ta có : \(2+2\sqrt{\left(6-x\right)\left(x-4\right)}\le2+6-x+x-4=4\)
\(\Rightarrow VP\le2\forall x\)(1)
Xét \(VT=x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\forall x\)(2)
Từ (1);(2) \(\Rightarrow VT\ge2\ge VP\)
Dấu "=" xảy ra \(\hept{\begin{cases}6-x=x-4\\\left(x-5\right)^2=0\end{cases}\Rightarrow x=5\left(TMĐKXĐ\right)}\)
Vậy nghiệm pt là x = 5
Giai phương trình
\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
Áp dụng bđt AM-GM:
\(\sqrt{x-4}\le\dfrac{x-4+1}{2}=\dfrac{x-3}{2}\)
\(\sqrt{6-x}\le\dfrac{6-x+1}{2}=\dfrac{7-x}{2}\)
Cộng theo vế: \(VT\le\dfrac{x-3+7-x}{2}=2\)
Mặt khác: \(VP=x^2-10x+27=\left(x-5\right)^2+2\ge2\)
\(VT=VP\Leftrightarrow x=5\)
Giai phuong trinh sau:
\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}=8\)
ta có đề bài <=>
\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
<=> \(\left|x-3\right|+\left|x+5\right|=8\)
<=>\(\left|3-x\right|+\left|x+5\right|=8\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)
dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)
đến đây bạn tự giaỉ dấu = nhé
1,thu gon bieu thuc
a A=\(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
b,B=\(\dfrac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}-\sqrt{7-2\sqrt{6}}}}\)
c, C=\(\dfrac{\sqrt{c^2+2c+1}}{\left|c\right|-1}\)
2,giai cac phuong trinh
a,\(x^2-9\sqrt{x}+14=0\)
b, \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6\)
GIUP MINH VOI MINH CAN GAP
Cau 1:
a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)
\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)
c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)
TH1: c>0
\(C=\dfrac{c+1}{c-1}\)
TH2: c<0
\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)
tim x de : -(\(\sqrt{x}\)-1) * p = 2 * \(\sqrt{x+2}\)
biet p = -(\(\sqrt{x}\)- 1)
cac ban giai ho minh mk dang can gap
Giải phương trình
`sqrt(x-3) + sqrt(5-x) = 2`
`sqrt(x-4)+sqrt(6-x) = x^2 -10x+27`
a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)
=>3<=x<=5
\(\sqrt{x-3}+\sqrt{5-x}=2\)
=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)
=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)
=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)
=>x-4=0
=>x=4
Giai bat phuong trinh
(x+1/x+1)*(x+2/x+1)=12/x
Nhanh gium nhe mk can gap rui
4.giai phuong trinh:
a.\(\sqrt{2}.x-\sqrt{6}=0\)
b.\(\frac{x^2}{\sqrt{3}}-\sqrt{12}=0\)
c.\(\sqrt{3.x}+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
a, \(\sqrt{2}x-\sqrt{6}=0\Leftrightarrow\sqrt{2}x=\sqrt{6}\Leftrightarrow x=\sqrt{3}\)
b, \(\frac{x^2}{\sqrt{3}}-\sqrt{12}=0\Leftrightarrow\frac{x^2}{\sqrt{3}}=\sqrt{12}\Leftrightarrow x^2=\sqrt{12}.\sqrt{3}\Leftrightarrow x^2=\sqrt{36}\Leftrightarrow x=36\)
c, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}x=\sqrt{12}+\sqrt{27}-\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}x=2\sqrt{3}+3\sqrt{3}-\sqrt{3}\Leftrightarrow\sqrt{3}x=4\sqrt{3}\Leftrightarrow x=4\)