Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2018 lúc 10:49

a) y = 4 x 3  + x, y′ = 12 x 2 + 1 > 0, ∀ x ∈ R

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì f′(x0) = 12 x 0 2  + 1 = 13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x0 = 1 hoặc x0 = -1

Vậy có hai tiếp tuyến phải tìm là y = 13x + 8 hoặc y = 13x - 8

c) Vì y’ = 12 x 2  + m nên m ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).

Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m < 0 thì y = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra:

y’ > 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ < 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số (1) đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và nghịch biến trên khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nguyên Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2021 lúc 21:31

2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)

Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2018 lúc 12:02

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Sách Giáo Khoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2018 lúc 8:40

a)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.

y = f(x) = − ( x + 1 ) 3  + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3  + 3x + 4 (C1)

Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) =  ( x + 1 ) 3  − 3x – 4


c) Ta có:  ( x + 1 ) 3  = 3x + m (1)

⇔  ( x + 1 ) 3  − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) =  ( x + 1 ) 3  − 3x – 4 (C’) và y = m – 4 (d1)

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

d) Vì (d) vuông góc với đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có hệ số góc bằng 9.

Ta có: g′(x) = 3 ( x + 1 ) 2  – 3

g′(x) = 9 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai tiếp tuyến phải tìm là:

y – 1 = 9(x – 1) ⇔ y = 9x – 8;

y + 3 = 9(x + 3) ⇔ y = 9x + 24.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 10:06

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Như Trần
Xem chi tiết
ẻ mí
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 20:35

b: Để (d)//y=-3x+2 thì m-1=-3

=>m=-2

c:

PTHĐGĐ là:

(m-1)x-4=x-7

=>(m-2)x=-3

Để hai đường cắt nhau tại một điểm nằm bên trái trục tung thì m-1<>1 và -3/(m-2)<0

=>m<>2 và m-2>0

=>m>2