cho a,b,c khac 0 thỏa mãn a/b=b/c=c/a . CMR a-b =c
Cho a ,b ,c La số thực thỏa mản điều kiện a khac 0 ,b khac 0 , c khac 0 Cmr a/c = (a+2007b)/(b+2007c)
cho a,b,c la 3 so khac 0 va a+b+c# 0
Thỏa mãn : a/b+c = b/c+a = c/a+b
Tinh gia tri bieu thuc : P = b+c/a + c+a/b + a+b/c
Cho a,b,c la ba so thuc khac 0,thỏa mãn điều kiện a+b-c/c=b+c-a/a=c+a-b/b
Hãy tính giá trị của biểu thức. B=(1+b/a)(1+a/c)(1+c/b)
cho a, b ,c thỏa mãn a/(b-c)+b/(c-a)+c/(a-b)=0
cmr: a/(b-c)^2+b/(c-a)^2+c/(a-b)^2=0
cho ba số a,b,c đôi một khác nhau thỏa mãn a/b-c +b/a-c +c/a-b =0
cmr: a/(b-c)2 +b/(c-a)2 +c/(a-b)2 =0
cho 4 số a,b,c,d thỏa mãn a+b/c+d=b+c/d+a (a+b+c+d khác 0 ) cmr a=c
Cho a,b,c thỏa mãn a/2014=b/2015=c/2016.CMR 4(a-b)0(b-c)=(c-a)^2
Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c . CMR: a+b=0 hoặc b+c=0 hoặc c+a=0
<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
<=>c(a+b)(a+b+c)=-ab(a+b)
<=>(a+b)(ac+bc+c2)+ab(a+b)=0
<=>(a+b)(ac+bc+ab+c2)=0
<=>(a+b)(a+c)(c+b)=0
a+b=0
<=> b+c=o
c+a=0
cho a,b dương và c ≠ 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\)
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b