tìm GT nguyên của n để phân số A =\(\frac{2n+7}{n+1}\) có GT là 1 số nguyên
a, chứng tỏ 2n+5/n+3 là phân số tối giản
b,tìm các giá trị nguyên của n để phân số B=2n+5/n+3 có GT nguyên
a. Gọi d = (2n + 5, n + 3)
\(\Rightarrow\hept{\begin{cases}\left(2n+5\right)⋮d\\\left(n+3\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n+5\right)⋮d\\\left[2\left(n+3\right)\right]⋮d\end{cases}}\)
\(\Rightarrow\left[2\left(n+3\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow\left[2n+6-2n-5\right]⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy (2n + 5, n + 3) = 1 hay \(\frac{2n+5}{n+3}\) là phân số tối giản.
a, gọi d là ucln của 2n+5 và n+3
suy ra 2n+5 chia hết cho d
n+3 chia hết cho d suy ra 2n+6 chia hết cho d
suy ra (2n+6)-(2n+5) chia hết cho d suy ra 1 chia hết cho d suy ra d=1 suy ra 2n+5/n+3 tối giản
b, B=2n+5/n+3=2n+6-1/n+3=2-1/n+3
để B nguyên suy ra 1/n+3 nguyên suy ra n+3= Ư (1) suy ra n+3=(1,-1)
n+3 = 1 suy ra n=-2
n+3=-1 suy ra n=-3
b. Để \(b\inℤ\) thì \(\left(2n+5\right)⋮\left(n+3\right)\)
\(\Rightarrow\left(2n+6-1\right)⋮\left(n+3\right)\)
\(\Rightarrow\left[2\left(n+3\right)-1\right]⋮\left(n+3\right)\)
Vì \(\left[2\left(n+3\right)\right]⋮\left(n+3\right)\) nên \(1⋮\left(2n+3\right)\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n=\orbr{\begin{cases}-2\\-1\end{cases}}\)
tìm số nguyên n để phân số \(A=\frac{2n+7}{n+1}\) là một số nguyên
\(A=\frac{2n+7}{n+1}=\frac{n+1}{n+1}+\frac{n+1}{n+1}+\frac{5}{n+1}\)
= \(2+\frac{5}{n+1}\)
=> \(\left(n+1\right)\in U\left(5\right)\)
=>
n+1 | 5 | -5 | 1 | -1 |
n | 4 | -6 | 0 | -2 |
Tíc mình nha!Kim Phương
Cho phân số với n là số nguyên khác 1 1. Tìm phân số A với n=2; n=4;n=-4 2. Tìm số nguyên n để A là số nguyên. 3. Tìm số nguyên n để A>0
1) Tìm số nguyên n để cho các ps sau có gt nguyên
a)12/3n-1
b)2n+3/7
Tìm số nguyên n để phân số \(\frac{14}{2n+1}\)có thể rút gọn được?
P/s: Giúp tôi >.<
2n + 1 chia hết cho 7 thì sẽ rút gọn được
tức là n = (7k-1)/2 (k là số nguyên lẻ)
2n+1 chia hết cho 7thì sẽ rút gọn được
tức là n=[7k-1]/2 [k là số nguyên lẻ]
nếu đúng cho mình 1 k và kb với mình nha
cho A =\(\frac{6n+7}{2n+1}\)(n thuộc Z)
a)tìm số nguyên n để A có giá trị là số nguyên
b)tiomf số nguyên n để A đạt giá trị lớn nhất
c)chứng tỏ rằng A là phân số tối giản
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
b.
\(Tacó:A=3+\frac{4}{2n+1}\)
- Để A đạt giá trị LN(lớn nhất) thì 4/2n+1 phải đạt giá trị LN => 2n+1 phải đạt giá trị nhỏ nhất=> 2n+1 \(\varepsilon\)N*
=> 2n + 1 >= 0
=> 2n >= -1
=> n >= -0.5
=> n = 0
=> \(A=3+\frac{4}{2.0+1}\)
=> A =\(3+4=7\)
Vậy : A đạt giá trị LN là 7 khi n = 0
Tìm các giá trị nguyên của n để ps A=\(\frac{3n+2}{n-1}\)có gt là số nguyên
Để A có gt nguyên \(\left(n\in Z\right)\)thì \(\frac{3n+2}{n-1}\in Z\)
hay \(3n+2⋮n-1\)
\(\Leftrightarrow3\left(n+1\right)-1⋮n-1\)
mà \(3\left(n+1\right)⋮n-1\)
suy ra n-1 thuộc ước của 1
hay \(n-1\in\pm1\)
Lập bảng gt:
Vậy....
Bài 1: Cho phân số A = \(\frac{2n-1}{n-3}\)
a) Tìm số nguyên n để A có giá trị nguyên
b) Tìm số nguyên n để A có giá trị lớn nhất
Bài 2: Cho phân số B = \(\frac{6n+7}{2n+3}\)
a) Tìm số nguyên n để B có giá trị nguyên
b) Tìm số nguyên n để B có giá trị nhỏ nhất
Bài 1:
a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)
Để A có giá trị nguyên
\(\Rightarrow\frac{5}{n-3}\in z\)
\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)
nếu n-3 = 5 => n = 8 (TM)
n-3 = -5 => n= -2 (TM)
n-3 = 1 => n = 4 (TM)
n-3 = -1 => n = 2 (TM)
KL: \(n\in\left(8;-2;4;2\right)\)
b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)
Để A đạt giá trị lớn nhất
=> \(\frac{5}{n-3}\le5\)
Dấu "=" xảy ra khi
\(\frac{5}{n-3}=5\)
\(\Rightarrow n-3=5:5\)
\(n-3=1\)
\(n=4\)
KL: n =4 để A đạt giá trị lớn nhất
Bài 2 bn làm tương tự nha!
Cho biểu thức \(A=\frac{n-4}{n-3}\left(n\in Z\right)\)
a. Số nguyên n phải có điều kiện gì để biểu thức A là phân số?
b. Tìm số nguyên n để A là số nguyên
c. Cho n > -3. Tìm Min của A
a.dk: n thuoc Z, n-4 chia het cho n-3
ket ban nha!
a, \(A=\frac{n-4}{n-3}\) là phân số <=> \(n-3\ne0\)
<=> \(n\ne3\)
b, \(A=\frac{n-4}{n-3}\inℤ\Leftrightarrow n-4⋮n-3\)
\(\Rightarrow n-4⋮n-3\)
\(\Rightarrow n-3-1⋮n-3\)
\(n-3⋮n-3\)
\(\Rightarrow1⋮n-3\)
\(\Rightarrow n-3\inƯ\left(1\right)\)
\(\Rightarrow n-3\in\left\{-1;1\right\}\)
\(\Rightarrow n-3\in\left\{2;4\right\}\)
c, \(A=\frac{n-4}{n-3}=\frac{n-3-1}{n-3}=\frac{n-3}{n-3}-\frac{1}{n-3}=1-\frac{1}{n-3}\)
để A đạt giá trị nỏ nhất thì \(\frac{1}{n-3}\) lớn nhất
=> n - 3 là số nguyên dương nhỏ nhất
=> n - 3 = 1
=> n = 4