Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Hoàng Yến
Xem chi tiết
Vy Thảo
16 tháng 5 2017 lúc 21:47

Bạn đã giải được bài này chưa?

Phạm Hồ Thanh Quang
16 tháng 5 2017 lúc 22:07

B = n3(n2-7)^2-36n
   = n3(n4-14n2+49)-36n
   = n7 - 14n5 + 49n3 - 36n
   = n(n- 14n+49n-36)
   = n(n6 - n5 + n- n4 - 13n4 + 13n3 - 13n3 + 13n2 + 36n2 - 36n + 36n - 36)
   = n[n5(n-1)+n4(n-1)-13n3(n-1)-13n2(n-1)+36n(n-1)+36(n-1)]
   = n(n-1)(n5+n4-13n3-13n2+36n+36)
   = n(n-1)[n4(n+1)-13n2(n+1)+36(n+1)]
   = n(n-1)(n+1)(n4-13n2+36)
   = n(n-1)(n+1)(n4-9n2-4n2+36)
   = n(n-1)(n+1)[n2(n2-9)-4(n2-9)]
   = n(n-1)(n+1)(n2-9)(n2-4)
   = n(n-1)(n+1)(n-3)(n+3)(n-2)(n+2)
   = (n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)
Có \(B⋮3\)\(B⋮5\);\(B⋮7\)(vì có 7 số tự nhiên liên tiếp)
Mà 3; 5; 7 đôi một nguyên tố cùng nhau
\(\Rightarrow B⋮3.5.7\Rightarrow B⋮105\)(đpcm)

Nguen Thang Hoang
19 tháng 7 2017 lúc 9:47

Phạm Hồ Thành Quang làm đúng đấy

Nguyễn Mai
Xem chi tiết
soong Joong ki
Xem chi tiết
soong Joong ki
Xem chi tiết
Nguyễn Hồng Sơn
Xem chi tiết
Trần Thùy Trang
30 tháng 1 2017 lúc 15:40

M=n^3(n^2−7)^2−36n

n[n^2(n^2−7)^2−36]

= n.[(n^3−7n)^2−6^2]

= n(n^3−7n−6)(n^3−7n+6)

=(n−3)(x−2)(n−1)n(n+1)(n+2)(n+3)

M luôn chia hết cho 2;3;5. Các số này đôi 1 nguyên tố cùng nhau => B chia hết cho 105

 
Khanh Hoa
Xem chi tiết
Hồng Phúc
15 tháng 10 2020 lúc 12:14

Dễ dàng phân tích được

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Rightarrow\left\{{}\begin{matrix}A⋮3\\A⋮5\\A⋮7\end{matrix}\right.\)

Do \(\left(3;5;7\right)=1\Rightarrow A⋮105\)

Khách vãng lai đã xóa
Thư
Xem chi tiết

Ta có : \(n^3\left(n^2-7\right)^2-36n\)

\(=n[\left(n^3-7n\right)^2-36]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)

là tích của 7 số nguyên liên tiếp 

\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)

hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)

Khách vãng lai đã xóa
Hạ Vũ
Xem chi tiết
Phạm Ngân Hà
17 tháng 6 2018 lúc 20:06

Xét \(5040=2^4.3^2.5.7\)

Phân tích:

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

Ta có:

\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)

\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)

Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:

- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)

- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)

- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

Nguyễn Thị Ngọc Mai
Xem chi tiết
Trần Thanh Phương
16 tháng 2 2019 lúc 22:09

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

Trần Thanh Phương
17 tháng 2 2019 lúc 11:23

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))