Cho bốn điểm bất kỳ A, B, C, D. Chứng minh rằng vecto AC + vecto B= vecto AD + vecto BC
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
bài 1
a CO-OB=BA
<=.> CO = BA +OB
<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM
b AB-BC=DB
<=> AB=DB+BC
<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM
Cc DA-DB=OD-OC
<=> DA+BD= OD+CO
<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM
d DA-DB+DC=0
VT= DA +BD+DC
= BA+DC
Mà BA=CD(CMT)
=> VT= CD+DC=O
BÀI 2
AC=AB+BC
BD=BA+AD
=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)
Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:
Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE
Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:
a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD
b) Vecto AB + vecto CD = Vecto AD + vecto CB
c)Vecto AB - vecto CD = Vecto AB - vecto BD
Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0
Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:
a) Vecto CO - vecto OB = Vecto BA
b) Vecto AB - vecto BC = Vecto DB
c) Vecto DA - vecto DB = Vecto OD - vecto OC
d) Vecto DA - vecto DB + vecto DC = Vecto 0
Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:
a) Vecto a= vecto AB + vecto AC
b) Vecto b= vecto AB + vecto AC + vecto AG
c) Vecto c= vecto BA + vecto BC
d) Vecto d= vecto AB - vecto AC + vecto BI
1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)
\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)
\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)
b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)
\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)
\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)
Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))
cho 6 điểm a b c d e f chứng minh vecto AC+ vecto BD+ vecto EF=vecto AF+ vecto BC+ vecto ED
Chuyển vế: \(\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}-\overrightarrow{AF}-\overrightarrow{BC}-\overrightarrow{ED}\)\(=\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}+\overrightarrow{FA}+\overrightarrow{CB}+\overrightarrow{DE}\)\(=\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{BD}+\overrightarrow{DE}\right)+\left(\overrightarrow{EF}+\overrightarrow{FA}\right)\)\(=\overrightarrow{AB}+\overrightarrow{BE}+\overrightarrow{EA}\)\(=\overrightarrow{AE}+\overrightarrow{EA}\)
\(=0\)
Suy ra: \(\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}=\overrightarrow{AF}+\overrightarrow{BC}+\overrightarrow{ED}\)
1. Chứng minh rằng với 4 điểm bất kì, ta luôn có: vecto AB + vecto DC = vecto AC + vecto DB
2. Cho hình bình hành ABCD, gọi M,N lần lượt là trung điểm của AD và BC, có bao nhiêu vecto ( khác vecto 0 ) cùng phương với vecto NC
3. Cho hình lập phương ABCD.A'B'C'D'.
a) Tìm góc tạo bởi 2 đường thẳng AC và DA'
b) Chứng minh rằng BD vuông góc với AC'
Mng giúp em với ạ, em đang cần gấp T.T
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
Cho 4 diem A B C D. Lấy I và J là trung diem cua AB và CD. Chứng minh vecto AC+ vecto BD= vecto AD+ vecto BC= 2 vecto IJ
cho 4 điểm A,B,C,D bất kì
c/m theo 3 cách rằng : vecto AC+ vecto BD=vectoAD+vecto bc
Bài nay` quá dễ ma`:
Ta có: vec'toCD + vec'toBC + vec'toAB
= vec'toAB + vec'toBC + vec'toCD (1)
Theo quy tắc cộng véc-tơ ta có:
vec'toAB + vec'toBC = vec'toAC
=> vec'toAC + vec'toCD = vec'toAD
=> Tổng (1) = vec'toAD
=> đpcm
Chúc bạn thành công nha!!!
Cho tam giác ABC.
a. Xác định điểm M thoả mãn đẳng thức vectơ: 2 vecto MA - vecto MB + vecto MC = vecto 0
b. Chứng minh rằng: 2 vecto OA - vecto OB + vecto OC = 2 vecto OM với điểm O bất kỳ
1, Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với G qua . B.
a, Chứng minh: vecto AD = 5/3 vecto AB - 1/3 vecto AC
b, AD cắt BC tại E. Tính BE/BC
2 Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với B qua G.
a, Chứng minh vecto AD = -(1/3) vecto AB + 2/3 vecto AC.
b, AD cắt BC tại E. Tính BE/BC.
GIÚP VỚI Ạ ! MÌNH CẦN GẤP Ạ!