Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thy Thy Dương
Xem chi tiết
Thanh Nga
16 tháng 9 2016 lúc 21:49

bài 1

a CO-OB=BA

<=.> CO = BA +OB

<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM

b AB-BC=DB

<=> AB=DB+BC

<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM

Cc DA-DB=OD-OC

<=> DA+BD= OD+CO

<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM

d DA-DB+DC=0

VT= DA +BD+DC

= BA+DC

Mà BA=CD(CMT)

=> VT= CD+DC=O

 

Thanh Nga
16 tháng 9 2016 lúc 21:51

BÀI 2

AC=AB+BC

BD=BA+AD

=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)

 

Min Yoongi
Xem chi tiết
Hồng Quang
4 tháng 8 2019 lúc 12:15

Xíu nữa làm :v

Hồng Quang
4 tháng 8 2019 lúc 19:01

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))

Hồng Quang
4 tháng 8 2019 lúc 19:04

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

su su
Xem chi tiết
Minh Nguyệt
21 tháng 8 2019 lúc 9:18

Chuyển vế: \(\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}-\overrightarrow{AF}-\overrightarrow{BC}-\overrightarrow{ED}\)\(=\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}+\overrightarrow{FA}+\overrightarrow{CB}+\overrightarrow{DE}\)\(=\left(\overrightarrow{AC}+\overrightarrow{CB}\right)+\left(\overrightarrow{BD}+\overrightarrow{DE}\right)+\left(\overrightarrow{EF}+\overrightarrow{FA}\right)\)\(=\overrightarrow{AB}+\overrightarrow{BE}+\overrightarrow{EA}\)\(=\overrightarrow{AE}+\overrightarrow{EA}\)

\(=0\)

Suy ra: \(\overrightarrow{AC}+\overrightarrow{BD}+\overrightarrow{EF}=\overrightarrow{AF}+\overrightarrow{BC}+\overrightarrow{ED}\)

Thiên Ý Đào
Xem chi tiết
Tô Thế Quang
Xem chi tiết
Tý Nguyen
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
Đoàn Văn Toàn
25 tháng 8 2017 lúc 19:58

mik bik cm theo 2 cach thoi

Trần Hoàng Thiên Bảo
25 tháng 8 2017 lúc 20:13

OK BẠN GIẢI GIÚP M VỚI

Đoàn Văn Toàn
27 tháng 8 2017 lúc 15:30

Bài nay` quá dễ ma`: 
Ta có: vec'toCD + vec'toBC + vec'toAB 
= vec'toAB + vec'toBC + vec'toCD (1) 
Theo quy tắc cộng véc-tơ ta có: 
vec'toAB + vec'toBC = vec'toAC 
=> vec'toAC + vec'toCD = vec'toAD 
=> Tổng (1) = vec'toAD 
=> đpcm 
Chúc bạn thành công nha!!!

Hoàng Thiên
Xem chi tiết
H nhi
Xem chi tiết