Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Chi Đỗ
Xem chi tiết
Vũ Thanh Tùng
Xem chi tiết
Nguyễn Minh Quang
23 tháng 10 2021 lúc 23:11

ta có :

undefined

Khách vãng lai đã xóa
Tôi là gió
Xem chi tiết
caybutchi1102
Xem chi tiết
phạm thanh duy
Xem chi tiết
Nguyễn Tấn Phát
6 tháng 8 2019 lúc 20:52

Giả sử:
\(A=\left\{1;2\right\}\)

\(B=\left\{1;2;3\right\}\)

\(\Rightarrow\text{ A là tập hợp con của B}\)

\(\text{Lại có: }A\subset B=\left\{1,2\right\}=A\)

Vậy ta suy ra ĐPCM

Trong
Xem chi tiết

\(X \cap \left(\right. Y \cup Z \left.\right) = \left(\right. X \cap Y \left.\right) \cup \left(\right. X \cap Z \left.\right) .\)

Với \(X = A \cap B , \textrm{ }\textrm{ } Y = B , \textrm{ }\textrm{ } Z = C\)

\(A\cap B\cap\left(\right.B\cup C\left.\right)=\left(\right.A\cap B\cap B\left.\right)\cup\left(\right.A\cap B\cap C\left.\right)\)

Rút gọn \(A \cap B \cap B = A \cap B\)

\(A\cap B\cap\left(\right.B\cup C\left.\right)=\left(\right.A\cap B\left.\right)\cup\left(\right.A\cap C\left.\right)\)

do đó

Đpcm

\(C_{E} \left(\right. A \cup B \left.\right) = \left(\right. C_{E} A \left.\right) \cap \left(\right. C_{E} B \left.\right)\)

Ta có

\(C_{E}\left(\right.X\left.\right)={x\in E\mid x\notin X\left.\right.}\)

ta xét vế trái

\(C_{E}\left(\right.A\cup B\left.\right)={x\in E\mid x\notin\left(\right.A\cup B\left.\right)}\)

\(\left(\right.x\in A\lor x\in B\left.\right)\Leftrightarrow\left(\right.\neg\left(\right.x\in A\left.\right)\land\neg\left(\right.x\in B\left.\right)\left.\right)\)

suy ra

\(C_{E}\left(\right.A\cup B\left.\right)={x\in E\mid x\notin A\land x\notin B}\)

lại có

\(=\left(\right.C_{E}A\left.\right)\cap\left(\right.C_{E}B\left.\right)\)

vậy

Đpcm

Cho tập \(A , B , C\) là ba tập con của tập \(E\).1) Chứng minh:

\(A \cap B \left(\right. B \cup C \left.\right) = \left(\right. A \cap B \left.\right) \cup \left(\right. A \cap C \left.\right)\)

Cách hiểu và viết đúng dấu:

Đây có thể là:

\(A \cap B \cap \left(\right. B \cup C \left.\right) = \left(\right. A \cap B \left.\right) \cup \left(\right. A \cap C \left.\right)\)

Nhưng biểu thức bạn viết có thể bị nhầm chỗ dấu ngoặc.

Có thể đúng là:

\(A \cap \left(\right. B \cup C \left.\right) = \left(\right. A \cap B \left.\right) \cup \left(\right. A \cap C \left.\right)\)

Chứng minh:

Ta chứng minh hai vế bằng nhau:

Phần tử \(x \in A \cap \left(\right. B \cup C \left.\right)\) nghĩa là:
\(x \in A\) và \(x \in B \cup C\) (tức \(x \in B\) hoặc \(x \in C\)).Vậy \(x \in A\) và \(x \in B\), hoặc \(x \in A\) và \(x \in C\).Tức \(x \in \left(\right. A \cap B \left.\right) \cup \left(\right. A \cap C \left.\right)\).

Ngược lại, nếu \(x \in \left(\right. A \cap B \left.\right) \cup \left(\right. A \cap C \left.\right)\) thì:

\(x \in A \cap B\) hoặc \(x \in A \cap C\).Vậy \(x \in A\) và \(x \in B\), hoặc \(x \in A\) và \(x \in C\).Tức \(x \in A\) và \(x \in B \cup C\), hay \(x \in A \cap \left(\right. B \cup C \left.\right)\).Vậy:

\(\boxed{A \cap \left(\right. B \cup C \left.\right) = \left(\right. A \cap B \left.\right) \cup \left(\right. A \cap C \left.\right)}\)

2) Chứng minh:

\(C_{E} \left(\right. A \cup B \left.\right) = \left(\right. C_{E} A \left.\right) \cap \left(\right. C_{E} B \left.\right)\)

Ở đây \(C_{E} A\) là phần bù của \(A\) trong \(E\) (ký hiệu thường là \(A^{c}\) hoặc \(E \backslash A\)).

Phát biểu đúng:

\(\text{Ph} \overset{ˋ}{\hat{\text{a}}} \text{n}\&\text{nbsp};\text{b} \overset{ˋ}{\text{u}} \&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; \left(\right. A \cup B \left.\right) \&\text{nbsp};\text{trong}\&\text{nbsp}; E = \left(\right. \text{ph} \overset{ˋ}{\hat{\text{a}}} \text{n}\&\text{nbsp};\text{b} \overset{ˋ}{\text{u}} \&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; A \&\text{nbsp};\text{trong}\&\text{nbsp}; E \left.\right) \cap \left(\right. \text{ph} \overset{ˋ}{\hat{\text{a}}} \text{n}\&\text{nbsp};\text{b} \overset{ˋ}{\text{u}} \&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; B \&\text{nbsp};\text{trong}\&\text{nbsp}; E \left.\right)\)

Tức là:

\(\left(\right. E \backslash \left(\right. A \cup B \left.\right) \left.\right) = \left(\right. E \backslash A \left.\right) \cap \left(\right. E \backslash B \left.\right)\)

Chứng minh:Nếu \(x \in E \backslash \left(\right. A \cup B \left.\right)\) thì \(x \in E\) và \(x \notin A \cup B\).\(x \notin A\) và \(x \notin B\) (vì nếu có trong \(A\) hoặc \(B\) thì trong \(A \cup B\)).Vậy \(x \in E \backslash A\) và \(x \in E \backslash B\), nghĩa là \(x \in \left(\right. E \backslash A \left.\right) \cap \left(\right. E \backslash B \left.\right)\).

Ngược lại, nếu \(x \in \left(\right. E \backslash A \left.\right) \cap \left(\right. E \backslash B \left.\right)\) thì:

\(x \in E \backslash A\) và \(x \in E \backslash B\), tức \(x \in E\)\(x \notin A\)\(x \notin B\).Vậy \(x \notin A \cup B\), tức \(x \in E \backslash \left(\right. A \cup B \left.\right)\).Vậy:

\(\boxed{E \backslash \left(\right. A \cup B \left.\right) = \left(\right. E \backslash A \left.\right) \cap \left(\right. E \backslash B \left.\right)}\)

Tóm lại:Đẳng thức 1: \(A \cap \left(\right. B \cup C \left.\right) = \left(\right. A \cap B \left.\right) \cup \left(\right. A \cap C \left.\right)\) (Phân phối giao với hợp)Đẳng thức 2: \(E \backslash \left(\right. A \cup B \left.\right) = \left(\right. E \backslash A \left.\right) \cap \left(\right. E \backslash B \left.\right)\) (Phần bù của hợp bằng giao phần b

Tham khảo

Mymy
Xem chi tiết
Hồng Phúc
20 tháng 4 2021 lúc 19:20

Cái j đậy vậy, gõ latex hộ cái đi trời ạ!!

Mymy
Xem chi tiết
Akai Haruma
19 tháng 4 2021 lúc 18:07

Lời giải:

\(A=\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 6;\pm 12\right\}\)

\(B=\left\{\pm 1;\pm 2;\pm 4;\pm 8\right\}\)

\(A\cap B=\left\{\pm 1;\pm 2;\pm 4\right\}\)

\(A\cup B=\left\{\pm 1;\pm 2;\pm 3;\pm 4; \pm 6;\pm 8;\pm 12\right\}\)

\(A\setminus B=\left\{\pm 3;\pm 6;\pm 12\right\}\)

$C$ là tập con của cả $A$ lẫn $B$, nghĩa là $C$ tập con của $A\cap B$, hay $C$ là tập con của $\left\{\pm 1;\pm 2;\pm 6\right\}$. Có đến 64 tập $C$ như vậy viết ra thì có lẽ hết ngày luôn.

 

Trương Hoàng Mai
Xem chi tiết