CMR: Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên liên tiếp đó bằng 0
CMR: Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên liên tiếp đó bằng 0
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Giúp với!!
vào câu hỏi tương tự nha bn
có đó
k mk nhé
~beodatmaytroi~
11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
GIÚP THÌ TICK CHO
a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương
b) Chứng minh rằng tổng các bình phương của không số nguyên liên tiếp (k=3,4,5) không là số chính phương
cho hai số chính phương liên tiếp . cmr tổng hai số đó cộng với tích của chúng là một số chính phương lẻ
Gọi 2 số chính phương liên tiếp đó là n2 ; (n+1)2
ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)
Không đúng: VD: 25;36 : 25+36 +25.36=71+900 =971 không là số chính phương
cho hai số chính phương liên tiếp . cmr tổng hai số đó cộng với tích của chúng là một số chính phương lẻ
Gọi hai số chính phương liên tiếp là k2 và (k+1)2
Ta có:
k2 + (k+1)2 + k2(k+1)2
= k2 + k2 + 2k + 1 +k4 + 2k3 + k2
= k4 + 2k3 + 3k2 + 2k + 1
= (k2+k+1)2
= [k(k+1)+1]2 là số chính phương lẻ.
CMR : nếu m2-n2 là một số nguyên tố thì m và n là hai số tự nhiên liên tiếp
Tổng của p số lẻ liên tiếp có là một số nguyên tố không?
1:
m^2-n^2=(m-n)(m+n)
Vì m+n>m-n và m^2-n^2 là số nguyên tố
nên m-n=1
=>m và n là hai số liên tiếp
2: Xét p số lẻ 2n+1;2n+3;...;2n+2p-1
Tổng là:
S=2n+1+2n+3+...+2n+2p-1
=p(2n+p)
=>S ko là số nguyên tố