Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Ngọc Diệp
Xem chi tiết
Ngọc Nguyễn
2 tháng 7 2019 lúc 20:24

a) a4 + a2 - 2

a4 + 2a2 - a2 - 2

a2.( a2 + 2 ) - ( a2 + 2 )

( a2 - 1 ).( a2 + 2 )

( a + 1 ).( a - 1 ).( a2 +2 )

b) x4 + 4x2 - 5

x4 + 5x2 - x2 - 5

x2.( x2 + 5 ) - ( x2 + 5 )

( x2 - 1 ).( x2 + 5 )

( x + 1 ).( x - 1 ).( x2 + 5 )

c) x3 - 19x - 30

x3 + 2x2 - 2x2 + 4x - 15x - 30

x2( x + 2 ) - 2x.( x + 2 ) - 15.( x + 2 )

( x + 2 ).( x2 - 2x - 15 )

d) x3 - 7x - 6

x3 - 3x2 + 3x2 - 9x + 2x - 6

x2.( x - 3 ) + 3x.( x - 3 ) + 2.( x - 3 )

( x - 3 ).( x2 + 3x +2 )

( x - 3 ).( x2 + 2x + x + 2 )

( x - 3 ).( x.( x + 2 ) + ( x + 2 )

( x + 1 ).( x + 2 ).( x - 3 )

e) x3 - 5x2 - 14x

x3 - 7x2 + 2x2 - 14x

x2.( x - 7 ) + 2x.( x - 7 )

( x - 7 ).( x2 + 2x )

x.( x + 2 ).( x - 7 )

Hà Mi
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 10 2016 lúc 9:12

Vì mình mới họ định lí mới nên minhfm uốn làm thử nếu cậu không hiểu tì hỏi mình để mình làm cách bình thường .

a ) Áp dụng định lí Bezout :
Đặt \(f\left(x\right)=x^3-7x-6,\) ta thấy \(f\left(-1\right)=0\) nên \(-1\) là một ước của \(f\left(x\right)\).

Vậy \(f\left(x\right)\) chia hết cho \(\left(x+1\right)\). Ta có : \(f\left(x\right)=\left(x+1\right)\left(x^2-x-6\right)\)

\(x^2-x-6=\left(x+2\right)\left(x-3\right)\).

Kết quả \(f\left(x\right)=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)

b ) Áp dụng định lí Bezout :

Đặt \(f\left(x\right)=x^3-19x-30.\)Xét một số ước của 30 , ta được \(f\left(-2\right)=0\).

Ta chia \(f\left(x\right)\) cho \(\left(x+2\right);f\left(x\right)=\left(x+2\right)\left(x^2-2x-15\right)\)

\(x^2-2x-15\) nhận \(x=5\) làm nghiệm .

Do vậy \(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)

Chúc bạn học tốt ok

KuDo Shinichi
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 12 2016 lúc 9:39

a ) \(x^3-7x-6=x^3-x-6x-6=x^3-x-6\left(x+1\right)\)

\(=x\left(x^2-1\right)-6\left(x+1\right)=\left(x+1\right)\left[x\left(x-1\right)-6\right]\)

\(=\left(x+1\right)\left[\left(x^2-x-6\right)\right]=\left(x+1\right)\left[\left(x^2+2x-3x-6\right)\right]\)

\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b )

\(x^3-19x-30=\left(x^3-9x\right)-\left(10x+30\right)=x\left(x^2-9\right)-10\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x-10\right)=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)

c )

\(a^3-6a^2+11a-6=\left(a-3\right)\left(a-2\right)\left(a-1\right).\)

 

Đặng Khánh Linh
Xem chi tiết
Nguyễn Minh Phương
8 tháng 10 2016 lúc 22:59

b) 3x4-3x3+9x3-9x2-24x2+24x-48x+48

=3x3(x-1)+9x2(x-1)-24x(x-1)-48(x-1)

=(x-1)(3x3+9x2-24x-48)

=3(x-1)(x3+3x2-8x-16)

Tuyết Dương Thị
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 8:34

\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)

Hắc Hàn Nan Thiên
Xem chi tiết
Phạm Như Anh
Xem chi tiết
Giang Hoàng Gia Linh
Xem chi tiết
Akai Haruma
11 tháng 10 2023 lúc 0:07

Lời giải:
a. $x^3-4x^2+x+6=(x^3-2x^2)-(2x^2-4x)-(3x-6)$

$=x^2(x-2)-2x(x-2)-3(x-2)=(x-2)(x^2-2x-3)$
$=(x-2)[(x^2+x)-(3x+3)]=(x-2)[x(x+1)-3(x+1)]$

$=(x-2)(x+1)(x-3)$

-------------------

b.

$x^3+7x^2+14x+8=(x^3+x^2)+(6x^2+6x)+(8x+8)$

$=x^2(x+1)+6x(x+1)+8(x+1)=(x+1)(x^2+6x+8)$

$=(x+1)[(x^2+2x)+(4x+8)]=(x+1)[x(x+2)+4(x+2)]$

$=(x+1)(x+2)(x+4)$