cho n là số nguyên dương và m là ước nguyên của 2n^2. cm n^2+m không là số chính phương.
Cho n là số nguyên dương và m là ước nguyên dương của 2 Chứng minh rằng :n - m không là số chính phương.
Cho n là số nguyên dương và m là ước nguyên dương của 2 Chứng minh rằng :n - m không là số chính phương.
Cho n là số nguyên dương và m là ước nguyên dương của 2n2
CMR : n2 + m không là số chính phương
Cho n nguyên dương, m là ước nguyên dương của \(2n^2\). Chứng minh m+\(n^2\) không là số chính phương
16.cho các số nguyên dương m,n thỏa mãn: m+n+1 là ước nguyên tố của 2.(m^2+n^2)-1. Cm m.n là một số chính phương
Ta có: \(2\left(m^2+n^2\right)-1=2\left(m^2+n^2+2mn\right)-1-4mn=2\left(m+n\right)^2-1-4mn\)
\(=2\left[\left(m+n\right)^2-1\right]-4mn+1=2\left(m+n-1\right)\left(m+n+1\right)-4mn+1-4m^2-4m+4m^2+4m\)
\(=2\left(m+n+1\right)\left(-m+n-1\right)+\left(2m+1\right)^2\)
Suy ra \(\left(2m+1\right)^2⋮\left(m+n+1\right)\)mà \(m+n+1\)nguyên tố nên \(2m+1⋮m+n+1\)
do \(m,n\)nguyên dương suy ra \(2m+1\ge m+n+1\Leftrightarrow m\ge n\).
Một cách tương tự ta cũng suy ra được \(n\ge m\).
Do đó \(m=n\).
Khi đó \(mn=m^2\)là một số chính phương.
Cho n là số nguyên dương , d là ước nguyên dương của 2n²,CMR n²+d không pải là số chính phương
Vì d là ước nguyên dương của 2n2 => d.q= 2n2
=> n2= d.q:2
Ta có: n2+d= d.q:2+d
=> n2+d= d.(q:2+1)
Vậy n2+d không phải là số chính phương ĐPCM
này các bn oi cho mk hoi
tại sao \(d\left(\frac{q}{2}+1\right)\)ko là số cp
Cho n là số nguyên dương và m là ước nguyên của 2n2 . CMR: n2 + m ko là số chính phương
Thầy giáo mik gợi ý là chứng minh phản chứng . Giúp mik ak !
cho n là số nguyên dương và d là một ước nguyện đường của 2n2 chứng minh rằng n2+ d không phải là số chính phương
cho n là số nguyên dương và d là một ước lớn hơn 0 của 2n2 . chứng minh rằng n2 + d không phải là số chính phương
Cho \(n\in\)N*; m là ước nguyên dương của \(2n^2\)
CM\(n^2+m\)không phải số chính phương
Đề thi HSG lớp 9 huyện Đông Sơn, tỉnh Thanh hóa
Giả sử n^2+m=a^2
Vì m là ước dương của 2n^2 nên 2n^2=mk ( k∈N )
Suy ra n^2+m=n^2+(2n^2)/k=a^2
⇔n^2.k^2+2n^2.k=a^2.k^2
Suy ra :
k^2+2k=(ak/n)^2à số chính phương.
Suy ra Vô lý vì k^2<k^2+2k<(k+1)^2
^ là mũ;/là phân số; . là nhân
chúc bạn học tốt