Cho ΔΔABC cân tại A .Đường cao AH =2cm ,BC =8cm .Đường vuông góc vs AC tại C cắt đường thẳng AH tại A
a.Cm các điểm B,Ccùng thuộc đường tròn ,đường kính AD
b. Tính AD
a) Gọi O là trung điểm của AD
mà AD là đường kính
nên O là tâm của đường tròn đường kính AD
hay OA=OD=R
Ta có: ΔACD vuông tại C(AC⊥CD)
mà CO là đường trung tuyến ứng với cạnh huyền AD(O là trung điểm của AD)
nên \(CO=\dfrac{AD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(OA=OD=\dfrac{AD}{2}\)(O là trung điểm của AD)
nên OC=OA=OD(1)
Ta có: ΔABC cân tại A(gt)
mà AH là đường cao ứng với cạnh đáy BC(gt)
nên AH là đường phân giác ứng với cạnh BC(Định lí tam giác cân)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
hay \(\widehat{BAD}=\widehat{CAD}\)
Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(cmt)
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
⇒\(\widehat{ABD}=\widehat{ACD}\)(hai góc tương ứng)
mà \(\widehat{ACD}=90^0\)(AC⊥CD)
nên \(\widehat{ABD}=90^0\)
hay AB⊥BD
Ta có: ΔABD vuông tại B(AB⊥BD)
mà BO là đường trung tuyến ứng với cạnh huyền AD(O là trung điểm của AD)
nên \(BO=\dfrac{AD}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AO=OD=\dfrac{AD}{2}\)(O là trung điểm của AD)
nên OB=OD=OA(2)
Từ (1) và (2) suy ra OB=OC=R
⇒B,C cùng thuộc đường tròn(O)
hay B,C cùng thuộc đường tròn đường kính AD(đpcm)
Cho tam giác ABC cân tại A , đường cao AH=2cm,BC=8cm. Đường vuông góc với AC tại C cắt đường thẳng AH tại D.
a) chứng minh các điểm b,c cùng thuộc đường tròn đường kính AD
b) Tính độ dài đoạn thẳng AD
Làm ơn giúp mình với !!! CẢm ơn nhiều !!!
Cho tam giác ABC cân tại A, đường cao AH = 2cm, cạnh BC = 8 cm. Đường vuông góc vói AC tại c cắt đường thẳng AH ở D
a, Chứng minh các điểm B, C cùng thuộc đường tròn đường kính AD
b, Tính độ dài đoạn thẳng AD
a, Chứng minh được ∆ABD = ∆ACD (c.g.c)
=> Các tam giác vuông ABD,ACD có chung cạnh huyền AD
=> B,C cùng thuộc đường tròn đường kính AD
b, Ta có HC= 4cm
Tính được AC = 2 5 cm
Xét tam giác ACD vuông tại C có đường cao HC
A C 2 = A H . A D
Từ đó tính được AD=10cm
Cho tam giác ABC cân tại A ,đường cao AH =2cm ,BC=8 cm . Đường vuông góc với AC tại C cắt đường thẳng AH ở D .
a) Chứng minh các điểm B,C thuộc đường tròn đường kính AD .
b) Tính độ dài đoạn thẳng AD
Cho tam giác ABC cân tại A, đường cao AH =2cm , BC =8cm. Đường vuông góc với AC tại C cắt AH kéo dài tại D .
a) Cm 2 điểm B, C thuộc đường tròn , đường kính AD
b) Tính bán kính đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC cân tại A, đường cao AH. Biết AH=2cm , BC = 8cm, đường vuông góc với AC tại C cắt AH tại D.
CM:B, C thuộc đường tròn đường kính ADTính ADCho tam giác ABC cân tại A, đường cao AH = 2 cm, BC = 8 cm. Đường vuông góc với AC tại c cắt đường thẳng AH ở D
a, Chứng minh các điểm B, C cùng thuộc đường tròn đường kính AD
b, Tính độ dài đoạn thẳng AD
a, Ta có:
A
C
D
^
=
90
0
=> C thuộc đường tròn đường kính AD
Chứng minh: A B D ^ = 90 0 => B thuộc đường tròn đường kính AD => B,C cùng thuộc đường tròn đường kính AD
b, Tính được AD=10cm
1. Cho tam giác nhọn ABC , hai đường cao BD và CE . Cm 4 điểm B, D , C,E cùng thuộc 1 đường tròn , hãy xác định tâm .
2. Cho tam giác ABC cân tại A, đường cao AH =2cm , BC =8cm. Đường vuông góc với AC tại C cắt AH kéo dài tại D .
a) Cm 2 điểm B, C thuộc đường tròn , đường kính AD
b) Tính bán kính đường tròn ngoại tiếp tam giác ABC
Cho \(\Delta\)ABC cân tại A .Đường cao AH =2cm ,BC =8cm .Đường vuông góc vs AC tại C cắt đường thẳng AH tại A
a.Cm các điểm B,Ccùng thuộc đường tròn ,đường kính AD
b. Tính AD
a: BC=8cm nên BH=CH=4cm
=>\(AB=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\)
Xét ΔABD và ΔACD có
AB=AC
góc BAD=góc CAD
AD chung
Do đó: ΔABD=ΔACD
Suy ra: góc ABD=góc ACD=90 độ
=>B,C cùng thuộc đường tròn đường kính AD
b: \(AB^2=AH\cdot AD\)
=>\(AD\cdot2=20\)
=>AD=10cm
Cho tam giác ABC cân tại A, các đường cao AH và BD, I là trực tâm, AH=8cm, BC=6cm. Đường vuông góc với AC tại C cắt đường thẳng AH tại E.
a) CM các điểm B, C, A, E cùng thuộc một đường tròn.
b) Tính độ dài AE.
c) CM HD là tiếp tuyến của đường tròn tâm O đường kính AI.