Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, C đối xứng với A qua Oy.
a. CMR: OB = OC
b. Tính số đo của góc xOy để B và B đối xúng với nhau qua O.
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, C đối xứng với A qua Oy.
a. CMR: OB = OC
b. Tính số đo của góc xOy để B và B đối xúng với nhau qua O.
B đối xứng với A qua tia 0X. Chọn H làm giao điểm của AB với 0X. Theo tính chất đường tròn.
Ta có: AB vông góc với tia 0X. H là trung điểm của AB.
Suy ra:
AH=HB
0A=0B (1)
C đối xứng với A qua tia 0Y. Chọn K làm giao điểm của AC với 0Y. Theo tính chất đường tròn.
Ta có: AC vông góc với tia 0Y. K là trung điểm của AC.
Suy ra:
AK=KC
0A=0C (2)
Từ (1) và (2), ta có:
0A=0B=0C.
Vậy kết luận 0B=0C.
Vì A đối xứng qua OX nên góc X0A= góc X0B.(3)
Vì A đối xứng qua OY nên góc Y0A= góc Y0C.(4)
Mà góc X0A+A0Y=X0Y.
Theo (3) và (4), ta có:
B0C=2X0A+2A0Y. Hoặc B0C=2XOY.
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) Chứng minh rằng OB = OC
b) Tính số đo góc xOy để B đối xứng với C qua O
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với với điểm A qua Ox, điểm C đối xứng với điểm A qua Oy
a) Chứng minh OB=OC
b) Tính số đo góc xOy để B đối xứng với C qua O
Cho góc xOy. Điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy. Tính số đo góc xOy để B đối xứng với C qua O.
Để B đối xứng với Cqua O thì x O y ^ = 900
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy. Tính số đo góc xOy để B đối xứng với C qua O
Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng
∆ OAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠ (AOB) ⇒ ∠ O 1 = ∠ O 4 (3)
ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠ (AOC) ⇒ ∠ O 2 = ∠ O 3 (4)
Vì B, O, C thẳng hàng nên:
∠ O 1 + ∠ O 2 + ∠ O 3 + ∠ O 4 = 180 0 (5)
Từ (3),(4) ; (5) ⇒ 2 ∠ O 1 + 2 ∠ O 2 = 180 0
⇒ ∠ O 1 + ∠ O 2 = 90 0 ⇒ ∠ (xOy) = 90 0
Vậy ∠ (xOy) = 90 0 thì B đối xứng với C qua O
Cho góc xOy có số đo 50o, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh các độ dài OB và OC
b) Tính số đo góc BOC
a) + B đối xứng với A qua Ox
⇒ Ox là đường trung trực của AB
⇒ OA = OB (1)
+ C đối xứng với A qua Oy
⇒ Oy là đường trung trực của AC
⇒ OA = OC (2)
Từ (1) và (2) suy ra OB = OC (= OA)
b) + ΔOAC cân tại O có Oy là đường trung trực
⇒ Oy đồng thời là đường phân giác
+ ΔOAB cân tại O có Ox là đường trung trực
⇒ Ox đồng thời là đường phân giác
cho góc xOy có số đo 50 độ điểm A nằm trong góc đó vẽ điểm B đối xứng với A qua Ox vẽ điểm C xúng với A qua Oy
a) so sánh các độ dài OB và OC
b) tính số đo góc BOC
Giải :
a, Oxlaf đường trung trực của AB nên OA=OB
Oy là đường trung trực của AC nên OA=OC
=> OB=OC
b, Xét tg AOB cân tại O ( do OA=OB )
=> góc O1= góc O2 = 1/2 góc AOB
Xét tg AOC cân tại o ( vì OA=OC )
=> góc O3 = góc O4 = 1/2 góc AOC
nên góc AOB+ góc AOC= 2 (góc O1+góc O3)
= 2.góc xOy
= 2.50 độ
= 100 độ
Vậy góc BOC = 100 độ
( Hình thì dễ nên bạn tự vẽ nhé )
Cho góc xOy có số đo là 50 độ, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh cáo các độ dài của OB và OC.
b) Tính số đo góc BOC.
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy. Chứng minh rằng OB = OC
Vì B đối xứng với A qua trục Ox nên Ox là đường trung trực của đoạn AB.
⇒ OA = OB (tính chất đường trung trực) (1)
Vì C đối xứng với A qua trục Oy nên Oy là đường trung trực của đoạn AC.
⇒ OA = OC (tính chất đường trung trực) (2)
Từ (l) và (2) suy ra: OB = OC.
Cho góc xOy = 50o ,điểm A nằm trong góc đó.Vẽ điểm B đối xứng với A qua Ox;điểm C đối xứng với A qua Oy.
a) So sánh OB và OC
b) Tính số đo góc BOC
a; Vì C đối xứng với A qua Oy => CA vuông góc với Oy và Oy đi qua trung điểm Ca
=> O thuộc dường trung trục CA => oC = OA ( tính chất đường trung trực ) (1)
Tương tự OB = OA (2)
Từ (1) và (2) => OB = OC
b; Gọi AC giao OY tại M ; AB giao Õx tại N
OA= OB => tam giác ABO cân tại O => OM vừa là đg cao vừa là p/g => COM = AOM (1)
CMTT AON = BON
BOC = COM + AOM + AON + BON = AOM + AOM + AON + AON = 2 ( AOM + AON ) = 2. xOy = 2.50 = 100 độ