Tìm a, b, c sao cho:
a. \(4x^4+81⋮ax^2+bx+c\)
b. \(x^3+ax^2+bx+c\) chia cho (x+2); (x+1); (x-1) đều dư 8
Tìm a, b, c sao cho:
a. \(4x^4+81⋮ax^2+bx+c\)
b. \(x^3+ax^2+bx+c\) chia cho (x+2); (x+1); (x-1) đều dư 8
Tìm a,b,c sao cho :
a) (4x4 + 81) \(⋮\)(ax2+bx +c)
b) x3+ax2 +bx+c cchia ccho x+2;x+1;x-1 đều dư 8
a/ \(4x^4+81=\left(4x^4+36x^2+81\right)-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2=\left(2x^2+6x+9\right)\left(2x^2-6x+9\right)\)
Để \(\left(4x^4+81\right)⋮\left(ax^2+bx+c\right)\)thì
\(\left[{}\begin{matrix}ax^2+bx+c\equiv2x^2+6x+9\\ax^2+bx+c\equiv2x^2-6x+9\end{matrix}\right.\)
Giờ suy ra được a, b, c
Câu b chỉ cần thực hiện phép chia đa thức rồi cho sô dư bằng 8 là xong
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
tìm các số a,b,c sao cho 4x4 + 81 chia hết cho ax2 + bx +c
\(4x^4+81\)
\(=\left(2x^2\right)^2+2.2x^2.9+9^2-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
Vậy \(\orbr{\begin{cases}a=2,b=-6,c=9\\a=2,b=6,c=9\end{cases}}\)
Chúc bạn học tốt.
Xác định các hằng số a,b sao cho
a) x^4 + ax^2 + b chia hết cho x^2 - x+1
b) ax^3 + bx^2 + 5x -50 chia hết cho x^2 + 3x - 10
c) ax^3 + bx-24 chia hết cho (x+1) (x+3)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
12 Tìm a,b,c để:
a) (x^4+ax^3+bx+c) chia hết cho (x-3)^3
b) (x^5+x^4-9x^3+ax^2+bx+c) chia hết cho (x-2)(x+2)(x+3)
c) (2x^4+ax^2+bx+c) chia hết cho x-2 và khi chia cho x^2-1 thì dư x
2. Xác định các hằng số a,b, sao cho
a) x^4 + ax^2 + b chia hết cho x^2 -x +1
b) ax^3 + bx^2 + 5x - 50 chia hết cho x^2 + 3x - 10
c) ax^ 3 + bx - 24 chia hết cho ( x+1) ( x+3)
Tìm a,b,c để:
1. (x4+ax3+bx+c) chia hết cho (x-3)3
2. (x5+x4-9x3+ax2+bx+c) chia hết cho (x-2)(x+2)(x+3)
3. (2x4+ax2+bx+c) chia hết cho x-2 và khi chia cho x2-1 thì dư x
Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?
1. Tìm a,b để:
x4-bx2+4x-a chia hết cho 2x+1
2. xác định hệ số a,b,c sao cho:
ax3+bx+c chia hết cho x+2 khi chia cho x2-1 thì dư x+5