(3x-3009)+72=72
3x+2 - 3x = 72
24-x = 72
\(3^{x+2}-3^x=72\)
\(\Rightarrow3^x\cdot\left(3^2-1\right)=72\)
\(\Rightarrow3^x\cdot\left(9-1\right)=72\)
\(\Rightarrow3^x\cdot8=72\)
\(\Rightarrow3^x=\dfrac{72}{8}\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
_____
Xem lại đề
3x+1- 3x-1 =72
\(\Leftrightarrow3.3^x-\dfrac{3^x}{3}=72\)
\(\Leftrightarrow9.3^x-3^x=3.72\)
\(\Leftrightarrow8.3^x=3.8.3^2\)
\(\Leftrightarrow3^x=3^3\Rightarrow x=3\)
3x=4y=5z và 3x-5y+2z=72
\(\hept{\begin{cases}3x=4y=5z\\3x-5y+2z=72\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\\3x-5y+2z=72\end{cases}}\Rightarrow\hept{\begin{cases}\frac{3x}{1}=\frac{5y}{\frac{5}{4}}=\frac{2z}{\frac{2}{5}}\\3x-5y+2z=72\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{1}=\frac{5y}{\frac{5}{4}}=\frac{2z}{\frac{2}{5}}=\frac{3y-5y+2z}{1-\frac{5}{4}+\frac{2}{5}}=\frac{72}{\frac{3}{20}}=480\)
\(\frac{x}{\frac{1}{3}}=480\Rightarrow x=160\)
\(\frac{y}{\frac{1}{4}}=480\Rightarrow y=120\)
\(\frac{z}{\frac{1}{5}}=480\Rightarrow z=96\)
Vậy x = 160 ; y = 120 ; z = 96
Từ \(3x=4y=5z\)\(\Rightarrow\frac{3x}{60}=\frac{4y}{60}=\frac{5z}{60}=\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{3x}{60}=\frac{5y}{75}=\frac{2z}{24}=\frac{3x-5y+2z}{60-75+24}=\frac{72}{9}=8\)
\(\Rightarrow x=8.20=160\); \(y=8.15=120\); \(z=8.12=96\)
Vậy \(x=160\); \(y=120\); \(z=96\)
72-3x=5x+8
72-3x=5x+8
=> -5x-3x=8-72
=> (-5-3)x=-64
=> -8x=-64
=> x=-64:(-8)
=> x=8
72-3x=5x+8
=>-5x-3=8-27
=>(-5-3)x=-64
=>-8x=-64
=>x=-64:(-8)
=> x= 8
72 - 3x = 5x + 8
72 - 3x = 5x + 8
72 - 8 = 5x + 3x
64 = 8x
=> 8x = 64
=> x = 64 : 8
=> x = 8
Vậy x = 8
72 - 3x = 5x +8
72-3X=5X+8
2X=72-8
2X=64
X=64:2
X=32
504/[16-3x]=72
Bài 2 c) (3x - 12) . 6 = 72
`(3x-12)xx6=72`
`3x-12=72:6`
`3x-12=12`
`3x=12+12`
`3x=24`
`x=8`