Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Tâm
Xem chi tiết
Huy Công Tử
Xem chi tiết
Aeris
Xem chi tiết
Nguyễn Thị Lan
Xem chi tiết
Nguyễn Hoài Phương
31 tháng 3 2018 lúc 16:30

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

Le Dinh Quan
Xem chi tiết
Agatsuma Zenitsu
6 tháng 2 2020 lúc 11:07

Nãy có sửa đề xong làm rồi nhưng tưởng sai nên bỏ thấy cô Chi cmt nên tui cũng nghĩ là sai giờ làm nha!
Đề: \(\hept{\begin{cases}x^3+2xy^2+12y=0\\x^2+8y^2=12\end{cases}}\)

~~~~~~~ Bài làm ~~~~~~~

Ta thấy nếu hệ có nghiệm \(\left(x,y\right)\Rightarrow y\ne0\)Vì nếu \(y=0\Rightarrow\hept{\begin{cases}x^2=19\\x^3=0\end{cases}\left(vl\right)}\)

Khi: \(y\ne0\)thay \(12=x^2+8y^2\)vào pt sau:

\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)

\(\Leftrightarrow\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2+2\left(\frac{x}{y}\right)+8=0\)

Đặt: \(t=\frac{x}{y}\Rightarrow t^3+t^2+2t+8=0\)

\(\Leftrightarrow\left(t+2\right)\left(t^2-t+4\right)=0\)

\(\Leftrightarrow t=-2\)(Vì \(t^2-y+4=\left(t-\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Nên suy ra: \(x=-2y\)

Thay \(x=-2y\)vào pt thứ 2 ta được:

\(4y^2+8y^2=12\)

\(\Leftrightarrow y^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

Khi \(y=1\Rightarrow x=-2\)Khi \(y=-1\Rightarrow x=2\)

Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left(2;-1\right);\left(-2;1\right)\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
6 tháng 2 2020 lúc 10:33

Em xem xem có bị nhầm đề không?. Trước kia cô từng thấy bài này nhưng mà \(8y^2\). Xem lại đề giúp cô nha!

Khách vãng lai đã xóa
Le Dinh Quan
8 tháng 2 2020 lúc 7:43

vậy thì mình cũng làm được

Khách vãng lai đã xóa
Nguyễn Tất Đạt
Xem chi tiết
alibaba nguyễn
4 tháng 2 2019 lúc 6:31

Rút y từ phương trình đầu thế vô phương trình dưới rồi quy đồng lên được. 

(x² + 5x + 1)² = 0

Incursion_03
4 tháng 2 2019 lúc 8:41

A ali : em có cách khác :D

Cộng 2 vế của 2 pt trên lại với nhau ta được

\(x^2-2xy+x-2y+3+y^2-x^2+2xy+2x-2=0\)

\(\Leftrightarrow y^2-2y+3x+1=0\)

\(\Leftrightarrow\left(y-1\right)^2=-3x\)

\(\Leftrightarrow\hept{\begin{cases}x\le0\\y=\sqrt{-3x}+1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\y=-\sqrt{-3x}+1\end{cases}}}\)

Đến đây thế vào pt (2) sẽ tìm đc x 

Nói chung làm cách a ali sẽ dễ hơn . cách của tớ cũng là 1 cách nhưng không được hay cho lắm :V

tth
8 tháng 2 2019 lúc 20:39

em quy đồng và khử mẫu lên nó ra thế này:

Pt (1) tương đương: \(x^2+x+3=2y\left(x+1\right)\Leftrightarrow y=\frac{x^2+x+3}{2\left(x+1\right)}\)

Thay vào pt (2) ta có: \(\left[\frac{x^2+x+3}{2\left(x+1\right)}\right]^2-x^2+2x.\frac{x^2+x+3}{2\left(x+1\right)}+2x-2=0\)

\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2}{4\left(x+1\right)^2}-x^2+\frac{x\left(x^2+x+3\right)}{x+1}+2x-2=0\)

\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x}{4\left(x+1\right)^2}=0\)

\(\Leftrightarrow\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x=0\)

thì khai triển tiếp hai sao ạ?

Nguyễn Lâm Ngọc
Xem chi tiết
Username2805
Xem chi tiết
Vũ Ngọc Duy
Xem chi tiết
Thiên Thiên Chanyeol
20 tháng 12 2017 lúc 13:10

\(\hept{\begin{cases}\sqrt[3]{2y+24}+\sqrt{12-x}=6\left(1\right)\\x^3+2xy^2+X-2yx^2-4y^3-2y=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)ĐK:\(x\le12\)

Đặt \(u=\sqrt[3]{2y+24}\)\(\Rightarrow u^3=2y+24\)

\(v=\sqrt{12-x}\) \(\Rightarrow v^2=12-x\)

Ta có hệ  phương trình :\(\hept{\begin{cases}u+v=6\\u^3+v^2=2y-x+36\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+\left(6-u\right)^2=2y-x+36\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2+36-12u=2y+x+36\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}v=6-u\\u^3+u^2-12u=2y+x\end{cases}}\)

Nguyen Thi Phuong Anh
19 tháng 12 2017 lúc 23:08

lop may vay