tìm hai số x ,y .Biết x,y là hai số nguyên dương và (x:y)^2=16/9;x^2+y^2=100
Câu 3 tìm hai số x ,y biết x , y là hai số nguyên dương ( x:y)^2 = 16/9. ; x^2+y^2 = 100
tìm hai số x, y biết x, y là hai số nguyên dương và (x : y)^2 = 16/9; x^2 + y^2 = 100
Ta có :
\(\left(\frac{x}{y}\right)^2=\frac{16}{9}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4=\left(\pm2\right)^2\)
\(\Rightarrow\hept{\begin{cases}x^2=\left(±2\right)^2.4^2\\y^2=\left(\pm2\right)^2.3^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm2.4\right)^2\\y^2=\left(\pm2.3\right)^2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2=\left(\pm8\right)^2\\y^2=\left(\pm6\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm8\\y=\pm6\end{cases}}\)
Mà x và y cùng dấu => ( x , y ) ∈ { ( -8 ; -6 ) ; ( 8 ; 6 ) }
giúp mik với ạ
tìm 2 số x.y biết x,y là 2 số mguyên dương (x:y)^2=16/9; x^2 +y^2=100
Cảm ơn
\(\left(\dfrac{x}{y}\right)^2=\dfrac{16}{9}\Rightarrow\dfrac{x}{y}=\dfrac{4}{3}\left(x,y>0\right)\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\)
Đặt \(\dfrac{x}{4}=\dfrac{y}{3}=k\Rightarrow x=4k;y=3k\left(k>0\right)\)
\(x^2+y^2=100\\ \Rightarrow16k^2+9k^2=100\\ \Rightarrow k^2=\dfrac{100}{25}=4\\ \Rightarrow k=2\left(k>0\right)\\ \Rightarrow\left[{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)
Tìm hai số x , y biết x , y là hai số nguyên dương : ( x : y ) 2 = 16/9. ; x2+ y2=100. Làm hộ với mai thi r
x2 : y2=16/9 =>x2/16=y2/9.
áp dụng tính chất của dãy tỉ số bằng nhau,ta có:x2/16=y2/9=x2+y2/16+9=100/25=4
=>x2=4.16=64 .Mà x là số nguyên dương nên x=8
=>y2=4.9=36 .Mà y là số nguyên dương nên y=6
( x : y ) 2 =16/9
=> x2 : y 2 = 16/9
=> x 2 = 16/9. y 2
=> 16/9.y 2 + y 2 =100
=> y 2.(16/9 +1 ) = 100
=> 25/9 . y 2 = 100
=> y 2 = 36
=> y = 6, y= -6
=> x2 + 36 = 100
=> x2 =64
=> x = 8 , x = -8
\(\left(x\div y\right)^2=\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4\)
Do đó:
\(\frac{x^2}{16}=4\Rightarrow x^2=16.4\Rightarrow x^2=64\Rightarrow x^2=8^2\Rightarrow x=\pm8\)\(\frac{y^2}{9}=4\Rightarrow y^2=9.4\Rightarrow y^2=36\Rightarrow y^2=6^2\Rightarrow y=\pm6\)
Vậy \(x=\left(8;-8\right);y=\left(6;-6\right)\)
Hoặc có thể làm.
\(\left(x\div y\right)^2=\frac{16}{9}\)
\(\Rightarrow\)\(x^2\div y^2=\frac{16}{9}\)
\(\Rightarrow\)\(x^2=\frac{16}{9}.y^2\)
\(\Rightarrow\)\(\frac{16}{9}.y^2+y^2=100\)
\(\Rightarrow\)\(y^2.\left(\frac{16}{9}+1\right)=100\)
\(\Rightarrow\)\(\frac{25}{9}.y^2=100\)
\(\Rightarrow\)\(y^2=100\div\frac{25}{9}\)
\(\Rightarrow\)\(y^2=36\)
\(\Rightarrow\)\(y=6;y=-6\)
\(\Leftrightarrow\)\(x^2+36=100\)
\(\Rightarrow\)\(x^2=100-36\)
\(\Rightarrow\)\(x^2=64\)
\(\Rightarrow\)\(x=8;x=-8\)
Vậy \(x=\left(8;-8\right);y=\left(6;-6\right)\)
ae giúp tôi bài này với
Bài 4. (0,5 điểm). Tìm hai số x, y. Biết x, y là hai số nguyên dương và
(x/y)^2 ; x^2 +y^2 =100
\(\left(\dfrac{x}{y}\right)^2:x^2+y^2=100\)
\(\dfrac{x^2}{y^2}:x^2+y^2=100\)
\(\dfrac{x^2}{x^2.y^2}+y^2=100\)
\(y^2+y^2=100\)
\(2y^2=100\)
\(y^2=50\)
⇒ \(\left[{}\begin{matrix}y=\sqrt{50}\\y=-\sqrt{50}\end{matrix}\right.\)
Còn lại bạn thay từng tường hợp vào tìm x là được
Tìm tất cả số nguyên dương (x:y) thỏa \(\frac{x^2}{y}+\frac{y^2}{x}=9\)
Áp dụng bđt quen thuộc \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)đc
\(9=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(\Rightarrow x+y\le9\)
Giả sử \(x\ge y\)thì \(2y\le x+y\le9\)
\(\Rightarrow y\le\frac{9}{2}=4,5\)
Mà y nguyen dương nên \(y\in\left\{1;2;3;4\right\}\)
Với y = 1 ; 2; 3 ; 4 thì x = ...
Tương tự vs trường hợp x < y ta cũng thu đc đáp án như vậy
Vậy ......
Nếu x hoặc y =1;2;3;4 thì sẽ ra rất nhiều nghiệm nhận loại sao
Cho hai số x y biết. x:y=5:4 và x^2-y^2 = 1 tìm hai số x và y.
giải giúp mình với
Cho x,y là hai số dương và x+y=16. Tìm Min:
\(M=\frac{9}{xy}+\frac{17}{x^2+y^2}\)
Ta có: \(M=\frac{9}{xy}+\frac{17}{x^2+y^2}\)
\(=\frac{18}{2xy}+\frac{17}{x^2+y^2}\)
\(=\left(\frac{17}{x^2+y^2}+\frac{17}{2xy}\right)+\frac{1}{2xy}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(x,y>0), ta có:
\(M\ge\frac{17.4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=\frac{68}{256}+\frac{2}{256}=\frac{35}{128}\)
Dấu "=" xảy ra khi: \(x=y=8\)