Cho \(x=1-\sqrt[3]{2}+\sqrt[3]{4}\)Tính \(B=x^{2019}-3x^{2018}+9x^{2017}-9x^{2016}+2019\)
1.Giải hệ phương trình
\(\hept{\begin{cases}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+17y}\end{cases}}\)
2.Cho P(x) là đa thức bậc 3 có hệ số bậc cao nhất là 1 và thảo mãn:
P(2016)=2017;P(2017)=2018.Tính:-3P(2018)+P(2019)
3.Cho x,y,z\(\ge1\)thỏa mãn:\(3x^2+4y^2+5Z^2=32\)
Tìm min:x+y+z
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Cho\(x=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}-1\).
Tính\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
Đặt y = \(x+1=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}\)
=> \(y^3=8+2\sqrt{14}+8-2\sqrt{14}+3\sqrt[3]{\left(8+2\sqrt{14}\right)\left(8-2\sqrt{14}\right)}.y\)
<=> \(y^3=16+6y\)
=> \(\left(x+1\right)^3=16+6\left(x+1\right)\)
=> \(x^3+3x^2+3x+1=6x+32\)
<=> \(x^3+3x^2-3x-5=26\)
Ta có:
\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
= \(x^6+3x^5-3x^4-5x^3+3x^3+9x^2-9x-15+2033\)
= \(\left(x^3+3x^2-3x-5\right)\left(x^3+3\right)+2033\)
= \(26x^3+2111\)
\(=26\left(\sqrt[8]{8+2\sqrt{14}}+\sqrt[8]{8-2\sqrt{14}}-1\right)^3+2033\)
Cho \(x=\sqrt[3]{8-2\sqrt{14}}+\sqrt[3]{8+2\sqrt{14}}-1\). Tính giá trị biểu thức
\(Q=\left(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\right)\)
So sánh:
a) x=\(\sqrt{2017}-\sqrt{2018}\)và y=\(\sqrt{2016}-\sqrt{2017}\)
b) x=\(\sqrt{2019}+\sqrt{2017}\)và y=\(2\sqrt{2018}\)
a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)
\(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)
Vậy x < y
bài 1: tính
(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x ( 100 – 25 x 2 x 2)
Bài làm:
(2019-2018+2017-.....-2) x (100 -25x2x2)
=(2019-2018+2017-.....-2) x (100 -25x4)
=(2019-2018+2017-.....-2) x 0
=0
*like phát
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-25x4)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-100)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x0
=0
a)A=/x+7/+/x^2-169/-/x-2018/
b)B=[2018/2+2018/3+2028/4+.....+2019/2018]:[1/2018+2/2017+3/2016+......+2018]
Cho A=1/2018+2/2017+3/2016+...+2017/2+2018
B=1/2+1/3+1/4+....+1/2019
Tính A/B
\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)
\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)
\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)
Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
??????????????????????????????????????????????????????????????????????????????????????????????????????????????