1.Tìm x,y thuộc Z biết 2xy + y -2 = 0
1. Tìm x,y thuộc Z biết 2xy - x + y - 2 = 0
\(2xy-x+y-2=0\)
\(\Leftrightarrow4xy-2x+2y-4=0\)
\(\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)-3=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(2x+1\right)\left(2y-1\right)=1.3=3.1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Nếu \(2x+1=1\) thì \(2y-1=3\) \(\Rightarrow x=0\) thì \(y=2\)
Nếu \(2x+1=3\) thì \(2y-1=1\) \(\Rightarrow x=1\) thì y = \(1\)
Nếu \(2x+1=-1\) thì \(2y-1=-3\) \(\Rightarrow x=-1\) thì \(y=-1\)
Nếu \(2x+1=-3\) thì \(2y-1=-1\) \(\Rightarrow x=-2\) thì y = \(0\)
Vậy \(\left(x;y\right)=\left(-2;0\right);\left(-1;-1\right);\left(0;2\right);\left(1;1\right)\)
tìm x,y thuộc z biết
x-2xy+y-3=0
Ta có: x-2xy+y-3=0
=>-2xy+x+y=3
=>-2.(-2xy+x+y)=-2.3
=>4xy-2x-2y=-6
=>4xy-2x-2y+1=-6+1
=>2x(2y-1)-(2y-1)=-5
=>(2y-1)(2x-1)=-5=1.(-5)=-5.1=(-1).5=5.(-1)
Ta có bảng sau:
2y-1 | 1 | -5 | -1 | 5 |
y | 1 | -2 | 0 | 3 |
2x-1 | -5 | 1 | 5 | -1 |
x | -2 | 1 | 3 | 0 |
Vậy (x;y) E {(1;-2);(-2;1);(3;0);(0;3)}
tìm x,y thuộc Z biết y2-2xy-3x-2=0
y2-2xy-3x-2=0 <=> (y-x)2-(x+1)(x+2)=0
=> y=x
th1: x=1
th2 x=2
theo tớ là vậy.
Tìm x, y thuộc Z biết : xy2 + 2xy - 4y + x = 0
x+y=xy suy ra x+y-xy = 0
suy ra (x-xy)+y -1 = -1
suy ra x(1-y)-(1-y)=-1
suy ra (1-y)(x-1)=-1
suy ra (1-y) va (x-1) thuoc uoc kua -1
suy ra 1-y = 1 va x-1=-1
hoac 1-y=-1 va x-1 =1
suy ra y=0 va x bag 0
hoac y =2 va x=2
vay co 2 cap x,y thoa man la(0;0) va (2;2)
Tìm x,y thuộc Z biết 2xy + 3x - 5y = 0
Tìm x,y thuộc Z biết
a.(x-1).(2y-4)=0
b.(3x-2).(y-3)=6
c.(3x-4).(2y-1)=2
d.2xy-3x-2y+8=0
tìm x,y,z biết 2x^2+y^2-2xy+4x-2y=- 2(x,y,z thuộc Z+)
tìm x,y thuộc z biết
a, x-2xy+y=0
b, xy+x-y =4
a, phương trình (=) 2x-4xy+2y=0 (=) 2x.(1-2y)+2y=0 (=) -2x.(2y-1)+(2y-1)=-1 (=) (2y-1)(1-2x)=-1 phần còn lại tự giải ( gợi ý: xét các trường hợp)
b,tương tự (y+1).(x-1)=3 tự giải nhé
chúc bn học tốt ( chỗ nào chưa hiểu hỏi ngay nhé)
tìm x y thuộc z biết x2 - 2xy + 2y2 -2x + 6y+5 =0
Ta có x2 - 2xy + 2y2 -2x + 6y+5 =0
<=> (x2 - 2xy + y2) - (2x - 2y) + (y2 + 4y + 4) + 1 = 0
<=> [(x - y)2 - 2(x - y) + 1] + (y + 2)2 = 0
<=> (x - y - 1)2 + (y + 2)2 = 0
<=> \(\hept{\begin{cases}x-y-1=0\\2\:+y=0\end{cases}}\)
<=> (x; y) = (-1; -2)