tứ giác ABCD có AB=BC và AC là ti phân giác của góc A chứng minh ABCD là hình thang
a) hình thang ABCD (AB//CD) có A - D = 20 độ , B=2C. Tính các góc trong hình thang
b) cho tứ giác ABCD có AB=BC và AC là phân giác của góc A . Chứng minh tứ giác ABCD là phân giác
a) hình thang ABCD (AB//CD) có A - D = 20 độ , B=2C. Tính các góc trong hình thang
b) cho tứ giác ABCD có AB=BC và AC là phân giác của góc A . Chứng minh tứ giác ABCD là phân giác
tứ giác abcd có ab = bc và ac là tia phân giác của góc a chứng minh rằng abcd là hình thang
Tứ giác ABCD có AB = BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang.
* Để chứng minh ABCD là hình thang ta cần chứng minh AD // BC.
Thông thường để chứng minh hai đường thẳng song song ta có thể chọn một trong các cách:
+ Chứng minh hai góc so le trong bằng nhau hoặc hai góc đồng vị bằng nhau.
+ Chứng minh hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.
Ở bài này ta sẽ đi chứng minh hai góc so le trong bằng nhau là góc A2 và C1.
Theo giả thiết ta có:
Mà hai góc này ở vị trí so le trong
⇒ AD // BC
Vậy ABCD là hình thang (đpcm).
Tứ giác ABCD có AB = BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang.
Tứ giác ABCD có AB = BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang
Cho tứ giác ABCD có AB = BC và AC là tia phân giác của góc A. Chứng minh ABCD là hình thang.
Vì \(\Delta ABC\) cân tại B ( vì AB =BC)
=> Góc BAC = góc BCA (1)
Vì AC là phân giác góc A
=> góc BAC = góc CAD (2)
Từ (1) và (2) => góc BCA = góc CAD
Mà 2 góc này ở vị trí so le trong
=> AD // BC
=> ABCD là hình thang
Vậy ________________
Tứ giác ABCD có AB = BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang ?
Bài giải:
Ta có AB = BC (gt)
Suy ra ∆ABC cân
Nên (1)
Lại có (2) (vì AC là tia phân giác của )
Từ (1) và (2) suy ra
nên BC // AD (do ở vị trí so le trong)
Vậy ABCD là hình thang
Ta có AB = BC (gt)
Suy ra: ∆ABC cân.
Nên \(\widehat{A_1}=\widehat{C_1}\) (1)
Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)
Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)
nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)
Vậy ABCD là hình thang.
Tứ giác ABCD có AB= BC và AC là tia phân giác của góc A. Chứng minh rằng ABCD là hình thang. ( vẽ giúp mình luôn hình ạ )