Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quynh anh Tran
Xem chi tiết
quynh anh Tran
Xem chi tiết
Phạm Vũ Hoàng Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2018 lúc 14:29

Giải bài 9 trang 71 Toán 8 Tập 1 | Giải bài tập Toán 8

* Để chứng minh ABCD là hình thang ta cần chứng minh AD // BC.

Thông thường để chứng minh hai đường thẳng song song ta có thể chọn một trong các cách:

+ Chứng minh hai góc so le trong bằng nhau hoặc hai góc đồng vị bằng nhau.

+ Chứng minh hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.

Ở bài này ta sẽ đi chứng minh hai góc so le trong bằng nhau là góc A2 và C1.

Theo giả thiết ta có:

Giải bài 9 trang 71 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà hai góc này ở vị trí so le trong

⇒ AD // BC

Vậy ABCD là hình thang (đpcm).

Lê Đăng Hải Phong
Xem chi tiết
trần hữu phước
Xem chi tiết
Nguyễn Thị Ngọc Hà
Xem chi tiết
Đặng Phương Thảo
4 tháng 8 2015 lúc 13:51

Vì \(\Delta ABC\) cân tại B ( vì AB =BC) 

=> Góc BAC = góc BCA (1) 

Vì AC là phân giác góc A 

=> góc BAC = góc CAD (2) 

Từ (1) và (2) => góc BCA = góc CAD 

Mà 2 góc này ở vị trí so le trong

=> AD // BC 

=>  ABCD là hình thang

Vậy ________________

Sách Giáo Khoa
Xem chi tiết
Tuyết Nhi Melody
21 tháng 4 2017 lúc 11:46

Bài giải:

Ta có AB = BC (gt)

Suy ra ∆ABC cân

Nên A1^=C1^ (1)

Lại có A1^=A2^ (2) (vì AC là tia phân giác của A^)

Từ (1) và (2) suy ra C1^=A2^

nên BC // AD (do C1^,A2^ ở vị trí so le trong)

Vậy ABCD là hình thang

qwerty
21 tháng 4 2017 lúc 11:50

Ta có AB = BC (gt)

Suy ra: ∆ABC cân.

Nên \(\widehat{A_1}=\widehat{C_1}\) (1)

Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)

Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)

nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)

Vậy ABCD là hình thang.

Trường Nguyễn Công
Xem chi tiết