phân tích đa thức thành nhân tử
a/(x+y)^2 -2(x+y)+1
b/(a+b+c)^3-a^3-b^3-c^3
c/ a^3+b^3+c^3 -3abc
phân tích đa thức thành nhân tử
a,A=x3+y3+z3-3xyz
b,B=(x+y)3+(y-z)3+(z-x)3
c,C=(x2+x+1) (x2+x+2)-12
d,D=bc(b+c)+ac(c-a)-ab(a+b)
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
phân tích đa thức thành nhân tử
a)a^3-b^3+c^3+3abc
b)a^3 -b^3-c^3-3abc
c)(x-y)^3+(y-z)^3+(z-x)^3
ta có :
\(a^3+c^3=\left(a+c\right)^3-3ac\left(a+c\right)\)
nên \(a^3+c^3-b^3+3abc=\left(a+c\right)^3-b^3-3ac\left(a+c-b\right)\)
\(=\left(a+c-b\right)\left[\left(a+c\right)^2+b\left(a+c\right)+b^2-3ac\right]=\left(a+c-b\right)\left(a^2+b^2+c^2+ab+bc-ac\right)\)
b. tương tự ta có :
\(a^3-b^3-c^3-3abc=a^3-\left(b+c\right)^3+3bc\left(b+c-a\right)\)
\(=\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2-3bc\right]=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)
c. ta có : \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=\left(x-z+z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+3\left(x-z\right)\left(z-y\right)\left(x-y\right)+\left(z-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=3\left(x-z\right)\left(z-y\right)\left(x-y\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Phân tích đa thức thành nhân tử
a) \(5x-y+ax-ay\)
b) \(a^3-a^2x-ay+xy\)
c) \(4x^2-y^2+4x+1\)
d) \(x^4+2x^3+x^2\)
e) \(5x^2-10xy+5y^2-5z^2\)
a Đề sai: )
b
\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)
c
\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)
d
\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)
e
\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)
c: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
d: =x^2(x^2+2x+1)
=x^2(x+1)^2
e: =5(x^2-2xy+y^2-z^2)
=5[(x-y)^2-z^2]
=5(x-y-z)(x-y+z)
phân tích đa thức thành nhân tử
a,x^2-xy-y^2 b,x^3+x^2+4 c,x^3-x^2-4 d,x^2-7x-y^2-7y
b: =x^3+2x^2-x^2+4
=x^2(x+2)-(x+2)(x-2)
=(x+2)(x^2-x+2)
c: =x^3-2x^2+x^2-4
=x^2(x-2)+(x-2)(x+2)
=(x-2)(x^2+x+2)
d: =(x-y)(x+y)-7(x+y)
=(x+y)(x-y-7)
phân tích đa thức thành nhân tử
a) 4( x+1)3-x-1
b) 5x (x-3)+ ( 3-x)2 - ( x-3)
c) 9x2y3 - 3x4y2 - 6x3y2+ 16xy4
a) \(4\left(x+1\right)^3-x-1=4\left(x+1\right)^3-\left(x+1\right)=\left(x+1\right)\left[4\left(x+1\right)^2-1\right]=\left(x+1\right)\left[2\left(x+1\right)-1\right]\left[2\left(x+1\right)+1\right]=\left(x+1\right)\left(2x+1\right)\left(2x+3\right)\)
b) \(5x\left(x-3\right)+\left(3-x\right)^2-\left(x-3\right)=5x\left(x-3\right)+\left(x-3\right)^2-\left(x-3\right)=\left(x-3\right)\left(5x+x-3-1\right)=\left(x-3\right)\left(6x-4\right)=2\left(x-3\right)\left(3x-2\right)\)
c) \(9x^2y^3-3x^4y^2-6x^3y^2+16xy^4=xy^2\left(9xy-3x^3-6x^2+16y^2\right)\)
phân tích các đa thức sau thành nhân tử:
a) x3+2x2+x
b) xy+y2-x-y
c) a3+b3+c3-3abc
Giúp mình với
Ta có : x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2(x + 1) + x(x + 1)
= (x2 + x) (x + 1)
= x(x + 1)(x + 1)
Ta có : xy + y2 - x - y
= y(x + y) - (x + y)
= (x + y)(y - 1)
Help me....
1 Tìm a và b biết : a^2+b^2+2=2a+2b
2 Phân tích đa thức thành nhân tử: a^3+b^3+c^3-3abc
3 Tìm x,y,z biết:x^2+y^2+z^2=xy+yz+xz
phân tích đa thức sau thành nhân tử
a, \(x^2-y^2-6x+9\)
b,\(x^3+4x^2+4x\)
c,\(4xy-4x^2-y^2+9\)
a: Ta có: \(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-y-3\right)\left(x+y-3\right)\)
b: Ta có: \(x^3+4x^2+4x\)
\(=x\left(x^2+4x+4\right)\)
\(=x\left(x+2\right)^2\)
c: Ta có: \(4xy-4x^2-y^2+9\)
\(=-\left(4x^2-4xy+y^2-9\right)\)
\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)